Prime Computer, Inc.

Source Level
Debugger

Rev. 19.2
Debugger Rel. 1.0-19.1

ginted atemtry to MAIN,TEST
T .

R(I1;

DOC8916-1XA

SOURCE LEVEL
DEBUGGER
PROGRAMMER’S
COMPANION

Revision 19.2
and Debugger Release 1.0-19.1

DOCg8916-1XA
This document reflects the software
as of Master Disk Revision 19 2 and the
Debugger’s Independent Product Release (IPR)
1.0-19.1.
by
David A. Kaye

assisted by

Marion Shepp

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The Programmer s Companon 1s a senies ot pocket size, quick
reference guides to Prime software products

Published by Prime Computer Inc
Tudhnical Publications Department
500 Old Connecticut Path

Fr imingham, Massachusetts 01701

Copvright 1965 bv Prime Computer, Inc Printed in USA All
rights reserved

The Programmer 5 Companton and PRIMOS aie registered
trademarks ot Prime Computer Inc

The intormation contained 1n this document 1s subject to change
without notice and should not be construed as a commitment by
Prime Computer Prime Computer, Inc assumes no responsibil-
ity tor errors that may appcar m this document

Note

For complete intormation on the Source Level Debugger, sce
Source Level Debugger User s Guide

CREDITS

Editing Pamela I Pierson
Technical Support Paul Cioto
Larrv Epstun
Debra Minard

Design Susan Windham
Production Leo Maldonado
Typesetter American Stiatford-

Graphic Suvices, Inc
Printer Winthrop Punting Company

TABLE OF CONTENTS

Documentation Conventions

Glossary of Prime Terms

Summary of Debugger Features

Invoking the Debugger

Command Format Conventions
Alphabetical List of Debugger Commands
Debugger Terms and Concepts

Special Considerations

Debugger Defined Blocks

Conversion Charts

ASCII Character Set

Printing History
First Printing, January 1985

14
18
22
48
53
61
64
66

DOCUMENTATION
CONVENTIONS

Abbreviations: Indicated by 1ust-colored letters.
-NOCOMPATIBILITY

Uppercase: Identifies command words, compiler
options, and other words that must be entered liter-
ally. Enter them i erther uppercase or lowercase.

RESTART

Lowercase: Identifies arguments. Substitute an ap-
propriate numetical or text value.

LOADSTATE filename

Square Brackets []. Indicate an optional kevword
ot argument.

~LISTING | pathname
YES
NO
Braces | |: Indicate a choice of arguments and/or
key words. At least one must be selected.
ON
ETRACE | ARGSS
OFY
Ellipsis . . . : Indicates that the preceding parameter

may be repeated.
DBG program-name [option-1 [option-2 ...]

r-

Angle Brackets <>: Used literally to separate ele-
ments of a pathname

<FOREST>BEECH>LEAF
Parentheses (): Must be entered exactly as shown

[(argument-hst)]

Hyphen -: Identifies a PRIMOS command line
optton Must be entered hterally

-CHECKOUT

DOCUMENTATION CONFVENTIONS 5

GLOSSARY OF
PRIME TERMS

64V Mode: See V Mode
Master File Directory (MFD)

A special directory that contans the names of all
User File Directories (UFDs) on a particular disk
or partition In PRIMOS, there 1s one MFD for
each logical disk See User File Durectory

PRIMOS
Prime Computer’s operating system

Pathname
A multi-part name that specifies a particular
PRIMOS file system object A full pathname
consists of the names ot a disk volume, a UFD, a
chain of subdirectories, and a taiget file system
object

SEG Utility
SEG 1s the utility used to load and execute V-
mode programs

Source File
A file containing programming language state-
ments in the format 1equued by the appropriate
compiler or assembler

User File Directory (UFD)
A directory listed in the MFD of a particular disk
volume or partition See Master File Directory

V Mode
The addressing mode used for multi-segmented
programs under PRIMOS.

GLOSSARY OF PRIME TERMS 7

SUMMARY OF
DEBUGGER FEATURES

This section summarizes the debugging command
features that help you use the Debugger to solve
problems 1n your program execution.

PROGRAM CONTROL
BREAKPOINT

Suspends progtam execution to examine progiam data
strategucally.

CALL
Calls a program block from Debugger command level.

CLEAR
Deletes a breakpoint or a tiacepont.

CLEARALL
Deletes all breakpoints and tracepomnts n either the
debugging environment or 1n a specific progiam block.

CONTINUE
Continues program execution following a breakpoint,
single-step operation, ot an error condition.

GOTO
Moves the exccution enviionment pointer to a state-
ment 1n an active program bloch.

IF
Executes an action list conditionally, depending on the
tesult of an expression.

IN
Continues execution untl the curtent program block
calls another program block

LIST

Displays the attributes of one breakpoint or tracepoint.
LISTALL
Displays the attributes of all the breakpownts or trace-
points you have set.
MAIN
Displays the current mamn program or designates a
program block to be recognized as main program.
ouT
Continues execution until the current program block
returns.

RESTART

Starts or restarts your program’s execution.

STEP
Executes a given number of statements at a time step-
ping across any called program block.

STEPIN
Executes a given number of statements at a time step-
ping nto anv called program block.

UNWIND
Erases the call/return stack. (The exccution environ-
ment pointer becomes undefined.)

DATA MANIPULATION

Evaluates a varable or expression

ARGUMENT>
Displays the values of all arguments passed to a pro-
gram block.

LANGUAGE
Displays or changes the name of the language the De-
bugger uses to evaluate expressions.

LET
Assigns a new value to any vanable defined by the
program.

PMODE
Sets the print mode used to evaluate a variable.

SUMMARY OF DEBUGGER FEATURES 9

SUMMARY OF DEBUGGER FEATURES 10

TYPL
Examines the data type and other attiibutes of a van-
able or expression.

TRACING
ETRACE

Displays a message each time the execution calls or re-
turns from a program block (entrv/exit tracing)

STRACE
Displays a trace message before every program state-
ment or labelled statement 1s executed (statement trac-
ing).

TRACEBACK
Looks at the contents of the call/return stack, which s
a list of program block calls currently active in pro-
gram execution.

TRACEPOINT
Displays a message each time the Debugger encoun-
ters a statement, label, or entry/exit of a program
block.

UNWATCH
Removes one or more variables from the watch list.

VTRACE
Temporanly limits value tracing to the entry or exit of
a program block ot turns oft value tracing without dis-
turbing the watch Lst.

WATCH
Displays a message whenever the value of one or more
variables changes during progiam execution (value
tracing) bv adding one or more variables to the watch
list.

WATCHLIST
Displays the names of varables currently in the watch
list.

DEBUGGER CONTROL
ACTIONLIST

Displays a breakpoint action list o1 macio command hst
immediately before 1t 1s executed.

ENVIRONMENT

Changes or verifics the evaluation environment
ENVLIST

Displavs the current evaluation cnvironment and the

contents of the evaluation environment stack
PSYMBOL

Displays a list of Debugger special symbols (ERASE,

KILL, ESCAPE, SEPARATOR, WILD, and

BLANKS) and their current character values
RESUBMIT

Invokes the Debugger s command line editor to edit

the most recent command

SYMBOL
Changes the character value ot a special svmbol

INFORMATION REQUEST
INFO

Displays attributes ot a program block or statement
SEGMENTS
Displays a kst ot the segments in memory currently in
use
STATUS
Displays information on the state of vour current de-
bugging environment
WHERE
Verihies the location of the eaccution enviionment
pointer or finds the program location that corresponds
to a given memorv address

MISCELLANEOUS

Enters and executes certain PRINOS commands from
Debugger command level

*
Executes the current command line a specihc number

of umes or indefinitelv unul the Debugger hnds an
error {(or vou press the break kev or CONTROL-P)

SUMMARY OF DEBUGGER I EAIURES /7

SUMMARY OF DLBUGGER 'EA{IURES 12

AGAIN
Repeats the command line just executed

CMDLINE
Enters your program s command line arguments from
Debugger command level

HLLP
Gets help with command syntax definitions

LOADSTATL
Loads the contents of SAVESTATL filc into a de-
bugging session

MACRO
Creates a macro to take the place of one or more De
bugger commands

MACROLIST
Displays one or all of your curiently defined macros
and their command lists

PAUSE
Temporarily suspends debugging scesion and returns
to PRIMOS command level

QUIT
Returns to PRIMOS command level

SAVESTATE
Saves all of your breakponts, tracepoints, and macros
in PRIMOS files for future use

SOURCE
Looks at, but does not change, source files using Edi-
tor subcommands

VPSD
Invokes the 64V mode Prime Svmbolic Debuggu
(VPSD) (machine level debugger) from Debugger

command level

!

|
L

COMMAND LINE EDITOR

Use the Debugger’s command line editor to modity
the most recent command line as well as any break-
pomt action list or macro command hst Invoke the
editor with the RESUBMIT, BREAKPOINT
-EDIT, or MACRO -EDIT command Table 1
summarizes the command line editor subcommands,
which are entered at the editor’s colon () prompt

TABLE /
COMMAND LINE EDITOR SUBCOMAMANDS
Subcommand Function
A Appends the text that follows A to

the end of the line

D Deletes the c(haracters under
which the D 1s positioned

Makes the character under which
the F 15 positioncd the first charac-
ter of the command line

1 Inserts the text that tollows I into
the line, starting after the charac-
ter under which the T 15 pos
tioned

L Makes the character under which
the L 1s positioned the last charac-
ter of the command line

(o) Overlavs the characters that fol
low O onto the line, starting at the
character under which the O ap
pears

Q Aborts the editing session and re-
turns to Debugger command
level, but does not 1eplace oniginal
command line

carriage return Fimshes the editing session and
replaces original command line

space Moves the cursor to the right one

0s1t10n
L P

SUMMARY OF DEBUGGER FEATURES 13

INVOKING
THE DEBUGGER

The Source Level Debugger 1s Prime’s interactive
debugging tool for its seven supported high-level
languages. In order to use the Debugger, you must
compile and load your program successfully. Enter
the Debugger duting the execution phase. The fol-
lowing steps show the procedure for invoking the
Debugger.

1. COMPILING WITH
THE -DEBUG OPTION

You must tell the compiler that you mtend to use
the Debugger by entering the ~-DEBUG compile-
time option on the command line.

compile-command program-name ~-DEBUG

The compile-command 1s one of the language-spe-
cific commands listed in Table 2. program-name 1s
the name of the program.

TABLE 2
COMPILE COMMANDS, SOURCE FILE
SUFFIXES, AND LIBRARIES

Compiler
Seurce
Comprle File Language
Language Command Suffia Library

‘ FORTRAN IV FTN FTN None
FORTRAN 77 F77 F77 None
Pascal PASCAL .PASCAL PASLIB
PL1 Subset G PLIG .PL1G PL1GLB
COBOL 7+ CBL .CBL CBLLIB
RPG II V-mode VRPG RPG VRPGLB
C CC .CC CCLIB

Compiling FORTRAN 1V Programs: When de-
bugging in FORTRAN 1V, you must compile vour
program with the -64V option along with the
-DEBUG option:

FTN program-name -64V -DEBUG

2. LOADING WITH
THE SEG LOADER

The next step 15 to load your program as follows.

0K, SEG -LOAD

[SEG rev 19.21]

$ LOAD program—-name

$ LIBRARY language-library
$ LIBRARY

LOAD COMPLETE

$ QUIT

0K,

INFOKING THE DEBUGGER 15

INVOKING THE DF BUGGER 16

The language-library 1s the appropriate language
library hsted 1n the preceding table

3. ENTERING DEBUGGER
WITH THE
DBG COMMAND

Enter the Debugger by 1ssuing the DBG command
DBG program-name [option-1 [option-2 . . .]]

The program-name here 1s an executable (SEG)
file option-1 and option-2 ... are optional com-
mand line parameters DBG command line options
are described below

-LOADSTATE pathname
~-LOADSTATE allows you to 1estore the contents of
a SAVESTATE file—your saved breakpoints, trace-
ponts, and macros—upon mnvoking the Debugger
The pathname s the pathname of the file you want to
restore

-VERIFY_SYMBOLS
Checks all external symbol declarations for consistency
in all program blocks within the executable file The
Decbugger displays a warning message during initiali-
zation 1f 1t finds inconsistent external symbol declara
tons

-NO_VERIf Y_SYMBOLS
Suppresses external symbol checking, speeding up i
tiahzation (-VERIFY_SYMBOLS 1s the defauit)

-VERIFY_PROC
Chechs the proceduie text so vou can set statement
breakpoints The Debugger gives a warning message 1f
it finds a statement for which the procedure text 15 un-
surtable for placing a breakpoint

rr

-NO_VERIFY _PROC
Specifies that the procedure text 1s not to be mspected
for improper format regarding placement ot break
pomnts (-VERIFY_PROC 1s the detault)

-COMINPLT

Specihies that the Debugger accept input trom a com
mand nput filc or CPL program

-NO_COMINPUT
Specifies that the Debugger accept input from only the
terminal, not from a command input fle (-NO_CO
MINPUT 15 the detault)

~-FULL_INIT

Tells the Debugger to read and process the entire
symbol table trom the specitied exccutable file before
enteting command mode Normally the debugger
reads from the svmbol table only when it needs the in
formation Use this option to obtain a complete exter
nal symbol mismatch summary at imitialization time
~FULL_INIT approximately triples mtialization
time

-QUICK_INIT
Tells the Debugger to load, at imualization ume, only
the information 1t needs to wdenuty each program
block The debugger loads the rest ot the symbol table

as requred during the debugging session
(-QUICK_INIT 1s the default)

INVOKING THE DFBUGGER 17

COMMAND FORMAT
CONVENTIONS

GENERAL FORMAT

Enter Debugger commands at the prompt charac
ter > The general format 15

>COMMAND-NAME

argument-1 }
argument-2 ., ..

argument-1 and argument-2 . .. are one or more
command arguments that may be

e Options that appear in uppercase 1n the command
format and that you enter literally as shown

e Variables, expressions, symbol names, activation
numbers, or statement identifiers that appear mn
lowercase in the command format You substitute
a suitable valuc

ARGUMENT FORMATS

Variables: The rules for identifying variables within
the Debugger are the same as the rules of host lan-
guage The syntax is expanded so you can reference
any variable in the debugging enviionment There
are three possible formats

e variable name
Specifies a vanable in the current program block
variable name can possibly be quabfied and/or
subscripted according to the rules of the host lan
guage

» program bloch name\variable name
Specifies a variable 1n the most recent (or only) ac
twvation of a named program block

e progiam block name \ activation number \ van
able name

Specities a variable in a named program block and
activation

Statements- There are six possible ways to identify
a statement, three use source file line numbers and
three use statement labels

Statement labels are label numbers or label con-
stants in any of the seven supported languages
(Precede labels that begin with a digit with a dollar
sign (§) to distinguish them from source line num

bers)

You may speafy the progiam block name with a
backslash (\) directly before the information in any
of the six formats

program-block name\

If you do not supply program-block-name, the De
bugger looks for the statement in the current pro
gram block Below are the six formats

® sourcc line

source line 15 a source hlc line number When
muluple statcments are on a single Line, this format
specifies the Icttmost statement at the source file
Line number

COMMAND FORM 1T CONI ENTIONS 19

COMMAND FORMAT CONI ENTIONS 20

SOuI ce-linestatement-otlset

statement-offset 15 the number of statements to
count from the hist statement on a multistatement
line such as an IT" statement whose THEN clauses
are on a different line of text (Thc first statement
has an oftset ot 0)

source line(insert line)
source hinc(insert ine+statement oftset)

insert-line 15 a line number 1n a $INSERT o1
%BINCLUDL file This tormat s for $INSERT or
%BINCLUDIF files that contain executable state
ments

statement-label

Identihies a statement bv label Precede references
to FORTRAN, Pascal, and COBOL 74 state-
ment numbers with a dollar sign to distinguish nu-

meric labels from soutce line numbers See Table
3

1ABLE 3
CHARACIERISTICS OF SI'A1EMENT
LABELS
Language Type Char acterrstics

FORTRAN IV Numeric Reterenced with
preceding dollar
wgn ($)

FORTRAN 77 Numeric Reterenced with
preceding dollar
sign ($)

Pascal Numeric Dedlared in
LABLL declara-
tion part of pro-
gram, referenced
with preceding $

PL/I-G Alphanumenc Fust chatacter

must be alpha-
betic, not ref-
erenced with §

TABIT 3 (CONIINULD)
Language Type
COBOL 74 Alphanumeric

RPG II V-mode Alphanumeric

C Alphanumeric

Char acter ntics

COBOL para-
graph name or
section name,
reterenced with
preceding & only
when first char-
acter 1S NUMETIC.
RPG tag. First
character must
be alphabeuc;
not referenced
with §

Fust character
must be alpha-
betic, not ref-
erenced with 8.

e statement-label4line-offset

line-offset 15 the number of source hines following

the line contaiming statement-label. The ref-
erenced statement 1s always the leftmost statement

on the e

s statement-label+line-offset+statement-otiset

statement-otfset 15 the number of statements to
count from the first statement on a multistatement

line (The first statement has an offset of 0)

COMMAND FORMAT CONIVENTIONS

27

ALPHABETICAL LIST OF
DEBUGGER COMMANDS

» . [language-name[,print-mode] | expression
[print-mode]

The . (evaluation) command evaluates a variable or
an expiession.

The optional language-name 1s the language of
evaluation, vou are evaluating with the syntax and
semantic rules of this language If not specified, the
language of evaluation 1s the host language.

The print-mode specifies the format for the result.
The print-mode can be ASCII, BI'T, DECIMAL,
FLOAT, HEX, o1 OCTAL. (See PMODE com-
mand)

The expression s the variable o1 expression you
want to evaluate. The expression can be a variable
or a more complex expression. Whete applicable,
you may evaluate.

Simple varables Arrays
Array elements Arrav cross sections
Structures (records) Structure members (fields)

Pownter-reterenced data Al legal expressions involving
any of the above

Evaluating Arrays: To reference a portion of an
ariav, specifv a star extent or a bound parr.

(g

Star extent To display or operate on the full range of
a dimension, substitute a star (*) for the
corresponding subscript. For example:

> : array-name (* num)

num is the index for the second dimen-
sion.

Bound pair To display or operate on a limited range
of a dimension, specify bounds in the
form:

lower-bound . . . upper-bound
For example:

array-name ... (3...7)
Lower-bound and upper-bound are any

valid expressions that reduce to integer
values. Enter the ellipsis (...) literally.

Functions: The Debugger supports standard
FORTRAN, PL1G, Pascal, and C language func-
tions. You can use the evaluation command with
these functions to evaluate expressions. Table 4 on
the next page lists supported language functions.

» ! primos-command-line

The ! command executes internal PRIMOS com-
mands from Debugger command level.

The primos-command-line contains one or more
internal PRIMOS commands that vou want to exe-
cute from the Debugger. (External commands in-
terfere with the memory image of the Debugger or
your program.)

Internal and external commands are summarized in

the PRIMOS Commands Reference Guide.

LIST OF DEBUGGER COMMANDS 23

LIS1 O DEBUGGLR COMMANDS 24

TABI E 4
PLIG PASCAL, FORI'RAN AND C
SUPPORTED FUNCTIONS

ABS COMITIN INE ALANI QIANH
ACOS CONJC FALL \IN QUAD
ADD ol FINLD NG RANA
ADDR COS TLOAI MINT RE AL
ADDREL COSD 1 OOk \MOD RI L
AFITR COSH HBOUND MUITIIY RIVIRSE
AINAC CSIN HICH NIN RINC
AINT CSQE 1 1ABS NOT1 RND
ALOG DABS ICHAR NULL ROUND
ALOG10 DACOS IDIM onD RS
AMANO DASIN IDIN 1 OFISL 1 RI
AMAX]1 DATAN IDNIN] ONCODI SEARCH
AMINO DALAN I\ Ok SEGNO
AMINI DALY INAC ORD SHEI
AMOD DBLI INDE TOINITE SICN
AND DBI1Q INSER IRED SIN
ANIN DOMELN NI BTN SIND
ARCIAN DLOS NI QABS SINH
ASIN DLOSI INTS QALOS S1710F
ATAN DDIM 10IN QASIN SNC T
ATAN2 DEC IQNIN [QAIAN SQR
ATAND DICAL IRND QVIANY SQR!
ALANH DECIMAL ISICN QLOS STACRBASI
BASEPIR DILT L LBOUND QCOSI SIACKPIR
BASLRI L DI 1EN QDIM SIR
BI FORI DIV FENGIH QIENI STRING
BIN DIMINSION 1CE QiNI SUBSIR
BINARY DINI Lcr QINID SUBIRACI
BIl DIVIDL [INKE IR QINI st eC
BOOL DI OC 11 Q1 OC 1AN
BYIL DIOC 1 1 QLOCI [\\D
CABS IDMAN] IN OMAN] I'ANH
CO0s DAMINT Xl QMINI 11vi
i DAMOD 1 ox QMINT IRANSI AT1
(4N DNIN 1OC) OMOD TRIM
CHAR DI OD 10¢ ONIN IRUNC
CHARACIIR DSICN 1ow QI ROD UNSPLC
CHR DSIN s QSICN UNSIR
CLOG DSING 11 QSIN VEEIDNY
CMPLN DSQR 1 1L IR QSINIL \Ok
CMPY DIAN MAN QSQR 1
COLLATE DT ANH MANO QIAN

> * [value]

The * command executes the curtent command hine
a spectfic number of times or indefinitelv

The value 15 the optional numbcr of times you want
to repeat the command line If vou do not specify a
value, the command line repeats until the Debugger
finds an ertor or until vou press the break key or

CONTROL-P

The * must be the last command on the command
line and separated trom the preceding commands by
a semicolon (command separator)

» ACTIONLIST|SUPPRESS 1
PRINT

ACTIONLIST PRINT displavs the commands 1n
a breakpoint action list or in a macro command list
ACTIONLIST SUPPRESS deactivates AC-
TIONLIST PRINT so no lists are displaved The
default 15 SUPPRESS

» AGAIN

AGAIN 1epeats the most recently cxecuted De
bugger command line Enter the AGAIN com
mand by 1tselt atter the > prompt

» ARGUMENTS [program-block name[\activa-
tion number]]

ARGUMENTS displays the values of the argu
ments passed to the program block defined by the
evaluation environment ponter

program-bloch-name 1s the name ot the program
block whose rguments yvou want to display activa-
tion-number 15 a particular activation of a specified
program block

LIST OF DEBUGGFR COMMANDS 25

LIST OF DEBUGGER COMMANDS 26

» BREAKPOINT [breakpoint-identifier] [ac-
tion-list] [options]
[-AFTER value] [-BEFORE
value]
[-EVERY value] [-COUNT
value] [-EDIT]

-IGNORE
~-NIGNORE

BREAKPOINT suspends the execution of your
progtam. The breakpoint-identifier identifies
where you want to suspend execution, which can be
an executable statement, statement label, or an
entry to or exit from a program block. If you don’t
specify a breakpomt-identifier, the Debugger uses
the value of the execution environment pointer. See
the list of options and functions that follows.

The action-list specifies one or mote Debugger
commands to be executed at the breakpoint. To
create an action hst, enclose the hst of Debugger
commands within a pair of square brackets (|]) and
separate the commands with semicolons

-AFTER
Causes the bicahpoint to occur only when the value of
the breakpoint counter exceeds the value of the speci-
fied value following ~AFTER

-BEFORE
Causes the breakpoint to occur only when the value of
the breakpoint counter 1s less than the value following
-BEFORE

-EVERY
Causes the breakpoint to occur every n iterations
through the breakpomt location, where n 1s the value

following ~-EVERY
-COUNT

Can be used to set the breakpoint counter

-IGNORE
Sets the ignore flag, supptessing the breakpont

-NIGNORE
Deactivates the 1ignore flag

-LDIT
Invokes the Debugger’s command line editor so you
can modifv a breakpoint action list

Idenufy entry/exit breakpomnts by one of the fol-
lowing three formats:

e BRK progiam-block-name\ \ bicakpoint-tvpe
* BRK \breakpoimnt-tvpe
¢ BRK progtam-bloch-name\

The breakpoint-type can be either ENTRY or
EXIT. The program-block-name 1s the name of
the called program block where vou want to break.

Breakpoints at statements or statement labels sus-
pend execution immediatelv before the statement or
labeled statement.

Breakpoints at the entry of a program block sus-
pend execution mnside the called program block 1im-
mediately after argument transfer. Exit breakpoints
suspend execution outside the program block after
the block has returned.

» CALL variable [(argument-list)]

CALL allows vou to call a program block from De-
bugger command level.

The variable 1s the name of the progiam block vou
want to call. The argument-list 15 a list of expres-
sions, or ‘“‘parameters,” that are supplied, or
“passed,” to the program block according to the
rules of the host language. In the argument-list, ex-
pressions are separated by commas.

LIST OF DEBUGGER COMMANDS 27

LIS1 OF DEBUGGLER COMMANDS 28

When you give a CALL command, the Debugger
evaluates each argument and calls the block, sup-
plying the values as arguments To call a block
within another external program block, specify the
block name or external block name followed bv a \

(backslash) before the varable

» CLEAR [breakpoint-identifier]
CLEAR deletes one breakpomt ot one tracepomt

The breakpoint-identifier must be anv vald
breakpoint or tracepoint identifier, such as a source
line number o1 statement label. Used by 1tself, with
no breakpoint identifier, CLEAR deletes the
breakpoint o1 tracepoint specified by the execution
environment pointer.

» CLEARALL [program-block-name
[-DESCEND]] | -BREAKPOINTS
~-TRACEPOINTS

CLEARALL deletes all breakpoints and trace-
ponts 1n either the debugging envitonment o1 1n a
specific program block

The program-block-name is the name of the pro-
gram block containing the breakponts and/or
tracepoints that you want to delete.

-DESCEND
Deletes all brcakponts and tracepoints in a speafied
program block and in all the nested program blocks or
“descendants” contamed 1n the speaihed block

~-BREAKPOINTS
Deletes onlv breakpoints

-TRACEPOINIS
Deletes only traccpomts
Used without any arguments, CLEARALL deletes all
breakponts and tracepoints in the debugging enviion-
ment

» CMDLINE

CMDLINE allows you to enter the command line
arguments that your program expccts from Debug-
ger command level After typing the command, you
get the prompt

Enter command |ine:

» CONTINUE

CONTINUE 1esumes program execution follow -
ing a breakpoint, a single step operation, or an erior
condition. Program execution resumes at the loca-
tion specified by the execution environment pointer

» ENVIRONMENT
program-block-name| \ activation-number]
-POP

ENVIRONMENT changes the evaluauon en-
vironment, which 15 the program block the Debug-
get considers current

The program-block-name 15 the name of the pro-
gram block that you want as the new evaluation en-
vironment The activation-number specihes a
particular activation of program-block-name The
—POP option 1emoves or “‘pops” an envionment

[IS1 OF DEBUGGF R COMMANDS 29

LIS OF DEBUGGER COMMANDS 30

from the evaluation environment stack Used by 1t-
self, with no argument, ENVIRONMENT dis-
plays the name of the current evaluation
environment.

» ENVLIST

ENVLIST displays the current evaluation environ-
ment and the contents of the evaluation environ-
ment stack

ON
ARGS
Ol E

» EIRACE

ETRACE displays a trace message each time a
program block 1s called or returned This 1s known
as entry tracing

ON
Displays a trace message when cach program block 15
called and rcturned

ARGS
Displays trace messages at the entry and exuts to called
program blocks and displavs the values of arguments
passed to each called block at each cntiy (but not each
exit)

OrF
Turns off entry tracng

» GOTO [program-block-name\ [activation-num-
ber \ |Jstatement-identifier

GOTO moves the location of the execution en-
vironment pointet to another statement in your
program.

The program-block-name 15 the name ot the active
program block contamning the statement to which
you ate transterring control The statement-identi-
fier 1s the statement to which vou are transferring
control It can be a source line number, statement
label, or any other valid identifier The activation-
number specifies that contiol 15 transterred to a
statement in a particular activation of a progiam
block

After a GO 1O, the evaluation environment pointer
1s set to the new program block It the specified
program block 1s written 1n another language, the
debugger sets the language of evaluation to that
language

-LIST

» HELP|-SYM_LIST
command-name
syntax-symbol

HELP displays informaton about Debugger com
mands and features

The command-name 15 the name of any Debugger
command for which vou want command line syntax
information T he syntax-symbol 15 any symbol used
in command syntax descriptions The -LIST option
Iists all Debugger commands 1n alphabetical order
The -SYM_LIST option hsts all Debugger svntax
symbols used in Debugger command line svntax

» IF expression action-list [ELSE action-list]

IF executes a breakpoint action list or any Debug-
ger command conditionally, depending on the result
Of an C)\PI'CSS]OH

LISI1 O DLBUGGER COMMANDS 37

LIST OF DEBUGGE R COMMANDS 32

The expression 15 anv valid expression mn the host
language The expression can be either true or
false If the expression 1s true, the fust action list
immediately following the expression 1s executed,
and the ELSE clause, if there, 1s 1ignored. If the ex-
pression 1s false, the first action Lst 1s 1ignored, but
the ELSE action list, if there, 1s executed (See dis-
cussion of the action list in * Debugger Terms and
Concepts)

You can use an IF command clause within the ac
tion list of another IF command clause to form a
nested action list

» IN

IN continues program executton until the next p1o-
gram block 1s called and suspends execution inside
that block immediately betore the first executable
statement Do not use GOTO at this pont, because
it may prevent mtiahzation of the program block

Issue a STEP command before using GOTO.

» INFO program-block-name\
statement-identifier

INFO displays information about a program block
or statement

The program-block-name is the name of the pro-
gtam block you want information about The state-
ment-identifier 15 the executable statement you
want information about For a statement, the De-
bugger displays the memory addiess of the first in-
struction

FORTRAN
77

PLIG

» LANGUAGE| PASCAL
COBOL
RPG

C

LANGUAGE changes the language of evaluation,
which 1s the language the Debugger uses to evalu-
ate expressions (also called host language)

Used without an argument, LANGUAGE displays
the name of the current host language The default
language of evaluation is the source language of the
program block contaming evaluation environment
pomnter To change the current language to another
language, use the appropriate argument

» LET variable = expression

LET assigns a new value to any variable defined by
the program

The variable 15 a variable name The expression 1s
any expression permutted by the host language
whose resultant value can be converted to the data
type of the variable

» LIST [breakpoint-identifier]

LIST displavs the attributes of one breakpoint or
one tracepoint

The breakpoint-identifier 1s the breakpoint or
tracepoint that you want to display Used without
the breakpoint identifier, LIST displays the attrib-
utes for the breakpoint or tracepoint defined by the
execution environment pomter

LIST OF DEBUGGER COMMANDS 33

LIST OF DEBUGGER COMMANDS 34

» LISTALL [program-block-name
[-DESCEND]] | -BREAKPOINTS
~-TRACEPOINTS

LISTALL lists the attributes of all breakpomts and
tracepoints

The program-block-name 1s the name of the pro-
gram block that contains the breakpoints and trace-
points you want to display.

-DESCEND
Displays all breakpoints and tracepoints for a specified
block and for all nested program blocks or “‘descend-
ants” contained 1n the specified block
-BREAKPOINTS
Displays only breahpoints
-TRACEPOINTS
Displays only tracepoints

If LISTALL 15 used without arguments, 1t displays
a list of all bieakpomt and tiacepoint attributes.

» LOADSTATE filename
LOADSTATE puts previously saved breakpoints,

tracepoints, and macros into your debugging ses-

sion. They were saved with SAVESTATE

The filename 1s the pathname of the SAVE-
STATE file.

command-list
-DELETE
-EDIT
» MACRO Y -CHANGE_NAME
old-macro-name new-macro-name
~ON
-OFF

macro-name

Creates new commands, called macros, that can be
used 1n place ot one or more Debugger commands

macro-name 1s the name of the macio that you
want to create command-list 1s the list of one or
more Debugger commands that vou want your
macro name to stand for

You must enclose the command list within square
brackets and separate the commands with semico
lons

-DELETE
Deletes a spceiticd macro

-EDIT
Invohkes the Debugger command line cditor so that
you can modity the macro specified by macro name

-CHANGE_NAME
Changes thc name ot a macro trom old-macro-name
to new-macro name

-OrFr
Turns off the usc of macros without destroving your
current macros

-ON
Enables the use of macros once again

To create a macio so that you can use one or moie
parameters as desired, enclose a positive integer
within percent signs (%) in the command list for
every parameter you mav want to use

» MACROLIST [macro-name]

Displays one or all ot vour currently defined macros
and then command hsts

The macro name 1s the name of a specific macro
that vou want to displav Used by itself, with no
macro name, MACROLIST displays all the macros
in the macrohist and in their command lists

LIST OF DFBUGGEFR COVIMANDS 35

LIST OF DLBUGGER COMMANDS 36

» MAIN [program-block-name]

MAIN tells the Debugger what the main program
block should be. The main program 15 the program
block that the Debugger calls when a RESTART

command 1s entered

The program-block-name 1s the name of the pro-
gram block that you want the Debugger to call
when a RESTART command 1s entered Used by
itself, with no program block name, MAIN displays
the name of the main program that the Debugger
curtently 1ecognizes

» OUT

OUT continues program execution until the cur-
rent block, defined by the execution environment
pointer, returns

» PAUSE
PAUSE temporarily suspends your debugging ses-

ston and returns you to PRIMOS command level.
You must enter only internal PRIMOS commands
with PAUSE, not external commands

» PMODE print-mode variable-1 [,variable-
2...]

PMODE sets the print mode of a variable to a spe-
cified print mode Whenever tht vanable 1s dis-
played in your debugging session, 1t 15 displayed n
the specified print mode

The print-mode 1s the print mode you want to
speafy. It can be ASCII, BIT, DECIMAL,
FLOAT, HEX, OCTAL, or DEFAULT.

variable-1 and variable-2... are the variables
whose print mode you want to set.

The next list provides the results that are printed
for each print mode.

ASCII
Prints each group of 8 bits as an ASCII character

BIT
Prints each bit as a biary digit

DECIMAL
Prints each group of 16 bits as a signed single-precision
decimal number

FLOAT
Prints each group of 32 buts as a single-precision float-
ing point number

HEX
Prints each group of 4 bits as a hexadecimal digit

OCTAL
Prints each group of 16 bits as an unwugned octal num-
ber

DEFAULT
Sets the print mode to the default mode (the mode
corresponding to the declared type of the vanable)

» PSYMBOL

PSYMBOL displays a list of the names and current
character values of special symbols The Debugger
recognizes six special svmbols.

Erase
Erases the immedately preceding character

Kill
Ignores all chaiacters tvped so far on the line

LIST OF DLBUGGLR COMMANDS 37

LIST OF DEBUGGER COMMANDS 38

Escape
Guves different meaning to the immediately following
character

Separator
Separates commands on command lincs

Wild
SOURCE command wildcard for FIND and LO
CATTE operations

Blanks
SOURCE command match for any numbcr of blanks

» QUIT

QUIT ends the debugging session and returns you
to PRIMOS command level

» RESTART [step-command]

RESTART starts or restarts program execution
from within the Debugger

The step-command 1s an optional Debugger sin-
gle-stepping command (STEP, STEPIN, IN, or
ouT)

» RESUBMIT

RESUBMIT 1nvokes the Debugger’s command
line editor so that you can modify the most recent
command line entered

For a complete list of command line editor subcom-
mands, see the section on the command line editor
m “Summary of Debugger Features ™

» SAVESTATE filename [-MACROS]
[F-BREAKPOINTS] [-TRACEPOINTS]

SAVESTATE saves vour breakpoints, tracepoints,
and/or macros and places them into a PRIMOS
text file for future use.

The filename is the pathname of the PRIMOS file
where you want to place your breakpoints, trace-
points, and/or macros. If you specify only the filen-
ame, the file will be placed in the directory to which
you are attached.

-MACROS
Saves only vour macros

-BREAKPOINTS
Saves only your breakponts and their action lists

-TRACEPOINTS
Saves only your tracepoints

If you specify only a filename without an option,
then all of your breakpoints, tracepomts, and
macros are saved.

» SEGMENTS

SEGMENTS displays a list of segments in memory
currently in use. The segments are classified by
usage as follows:

® User procedure text, linkage text, and data
e Debugger procedure text
e Debugger linkage text, data, and symbol table

e Stack areas

LIST OF DEBUGGER COMMANDS 39

LIST OF DEBUGGER COMMANDS 40

» SOURCE source-command [argument]

SOURCE allows you to examine your source file
while debugging

The source-command 1s any EDITOR command
that you can use with SOURCE There are 14 that
you can use, all of which examine, but do not mod-
ify, a file The argument 1s an EDITOR command
object such as a ine number o1 text string See the
source EDITOR subcommands listed below.

*

Repeat command line, see also Debugger REPEAT
(*) Command

BOTTOM
Position pointer to bottom of file

BRIEF
Don’t print target lLnes of FIND, LOCATE,
POINT, and NEXT operations

FIND
Locate line with the specified text stung beginning in a
given column

LOCATE
Locate hne with the specified text string

MODE
Set edit mode, the only mode implemented 1s NUM-
BER/NNUMBER

NEXT
Move line ponter forward or bachward
POINT
Position to specific line
PRINT
Print one or more lines
PSYMBOL

Print character symbols, see also Debugger PSYM-
BOL command

SYMBOL
Set character symbol, see also Debugger SYMBOL
command

TOP
Position line pomnter to top of file

VERIFY
Print target hines ot FIND, LOCATE, POINT, and
NEXT operations

WHERE
Print current linc number

There are three other special source subcommands.

EX
The EX subcommand sets the source file and EDI-
TOR line pointer to the soutce line where execution
resumes (the execution environment pointer), then
displays that ine You cannot use this command when
the execcution environment pointer iS at a program
block exit

NAME
flename
-DEFAULT

The NAME subcommand lets you look at the con-
tents of another file from within the Debugger

The -DEFAULT option brings vou back to looking
at the file corresponding to the evaluanon enviton
ment

Used with no argument, the NAME subcommuand
gives the current source pathname

RENAME
tilename [-BLOCK program-block name]

The RENAME subcommand resets the default source
hlename for a specified program

The filename 15 the name you want for your default
source file The program-block-name s the name ot
the program block i which the detault source file will
be the specified tilename If vou do not specify pro-
gram-block name, the Debugger assumes it 1s the cur
rent evaluation environment If the indicated program
block 1s the same as the current block, the current
source file 15 changed to filename.

LIST OF DEBUGGLR COMMANDS 4/

LIST OF DEBUGGER COMMANDS 42

» STATUS

STATUS displays information about the state of
your debugging environment.

» STEP [value]

STEP executes one or more statements at a time
and steps across calls to program blocks.

The value 1s the number of statements you want to
execute before suspending execution. If no value 1s
specified, one statement is executed by default.

» STEPIN [value]

STEPIN executes one or more statements at a time
and steps into program blocks that are called.

The value 1s the number of statements vou want to
execute before suspending execution. If no value 1s
specified, one statement 1s executed by default.

FULL
» STRACE | QUIET
OFF

STRACE allows you to display a trace message be-
fore execution of every program statement or every
labelled program statement. STRACE invokes the

statement tracing feature.

FULL
Displays a trace message before the execution of every
program statement in vour program

QUIET
Displays a trace message only betore the execution of
each labelcd statement

OFl

Turns off statument tracing

» SYMBOL symbol-name character-value

SYMBOL changes the value of a special symbol
recognized by the Debugger

The symbol-name s the name of the character
symbol ERASE, KILL, ESCAPE, SEPARA-
TOR, WILD, or BLANKS The character-value
1s the new character value of the symbol It may ros
be alphanumeric or identical to an existing character
symbol value, and 1t may not be a space

» TRACEBACK [-FRAMES value [-I EAST
~RECENT]] [-'ROM value] [- 1O value]
[-REVERSE] [-DBG] [-ONUnuts]
[-ADDRESSES]

TRACEBACK allows you to look at the contents
of the call/return stack, a hst ot currently active
program blocks in your program execution

value 1s a positive non zero integer With no argu-
ments, all frames on the stack are printed from most
recent to least recent

-FRAMES
Specifies the number of frames displavcd by value and
display frames trom the most 1ecent trame to the least
recent framc

-LEAST_RECENT
Displays the least 1ccent value frames

LIST OF DEBUGGLR COMANDS 43

LIST OF DEBUGGER COMMANDS 44

-FROM
Starts the traceback from the fiame number value that
follows - FROM

-TO
Ends the traceback with the frame repiesented by
value

-REVERSE
Lists the frames n reveise order from the least recent
to the most recent

-DBG
Displays debugger-owned frames in expanded form
along with other trames

—ONUNITS
Displays for each trame the names of all on-umts and
their addresses

-ADDRESSES

Displays internal addiess information

» TRACEPOINT [breakpoint-identifier]
[-AFTER value]
[-BEFORE value] [-EVERY
value] [-COUNT value]

-IGNORE

-NIGNORE

TRACEPOINT displays a trace message each time
a statement, label, or entry/exit to a progtam block
1s encountered

The breakpoint-identifier 1s the statement, label,
or entiy/exit where you want to display a trace
message

The -AFTER, -BEFORE, -EVERY, ~-COUNT,
-IGNORE, and -NIGNORE options work the
way they do for breakpomnts (For an explanation of
these options, see the discussion under the
BREAKPOINT command in this section)

» TYPE expression

TYPE displays the data type and other attributes of
a variable or expression.

expression 1s any expression permitted by the host
language.

» UNWATCH | variable-1 [,variable-2 . ..]
-ALL

UNWATCH removes one or more variables from
the watch list (created during value tracing with the
WATCH command).

variable-1 and variable-2 . .. are the variables you
want to remove from the watch list. The ~ALL op-
tion removes all variables from the watch hst.

» UNWIND

UNWIND unwinds call/return stack and causes
the execution environment pointer to become unde-

fined.

» VPSD

VPSD invokes the 64V-mode Prime Symbolic De-
bugger (VPSD), which 15 one of Prime’s machme-
level debuggers.

LIST OF DEBUGGER COMMANDS 45

LIST OF DEBUGGF R COMMANDS 46

F'ULL
» VTRACE | ENTRY_EXIT
Ol k

VTRACE can trace values at the entry ot exit of a
program block and turn off value tracing

ENTRY_EXIT
Enables value tiacing on only the entries to and exits
from program blocks

OFr
Suppresses valuc tracing without disturbing the con-
tents of the watch list

FULL

Enables valuc tracing at every statement once again

» WATCH variable-1 [,variable 2 ..]

WATCH displays a message whenever the value of
one or more variables changes during program exe-
cution This feature 1s known as value tracing

variable-1 and variable-2... aie the varables
whose values you want to trace The variables that
you trace are placed onto an internal Debugger
table known as the watch list

Give a program block and activation number to
watch an automatic variable at that activation only

program-block-name\ activation-number\
variable-name

To watch any portion of an array or structure, use
star extent or bound pair in 1eference (See the
command)

The way variables are watched differs for each stor-
age class

ro

e The value of a static variablc 15 saved when the
WATCH command 15 gnen and s watched

throughout the debugging session unless 1t 1s 1e
moved by UNWATCH (All COBOL variables
are static)

e Value of an automatic variable 15 saved upon pro
gram block cntry and watched unul the program
block becomes nactive

e A PL/1-G bascd vanable or Pascal dynamic van
able 1s saved and watched according to the storage
class of the locator (ponter)

e PL/1-G contiolled variables cannot be watched

» WATCHLIST

WATCHLIST displavs the names of variables cui-
rently 1in the watch hst

» WHERE [segment-number/oftset]

WHERE displays the location ot the execution en
vironment pointet

You can find the program location that cortresponds
to a given memory address by speaitying the seg-
ment-number (octal), and the offset (octal), which
15 the address of the location n the segment

Used by 1tself, with no argument, WHERE dis-
plavs the current location of the execution environ-
ment pointer

[IST OF DFBUGGF R COMMANDS 47

DEBUGGER TERMS
AND CONCEPTS

Several Debugger terms and concepts are related to
the Debugger functions. For more detailed infor-
mation, see the Source Level Debugger User’s Gurde

Action List

An action st 15 a list of Debugger commands en
closed 1n squarce brackets and separated by semico-
lons For example

[X, TYPE X, TYPE Y]
(See the discussion under th¢ BREAKPOINT

command)

Activation

An activation 1efers to a particular execution of a
program block An activation number specifies a
particular actnation of a program block when
more than one activation can exist The activation
numbers are either absolute o1 rclative

Absolute
The actual number of the activation

Relative
The number of activations to count backw ards
from most 1ecent activation Speafy number
with a minus sign and integer constant

Active Program Blocks

An active program block 15 a program block that
has been called, but not yet returncd

e Environments

The environment 1dentifies a program block or
subroutine. The Debugger maintains two environ-
ment pointers

Execution Environment Pointer
Describes the location at which the Debugger
resumes exccution. (Defined only when pro-
gram 1s active)

Evaluation Environment Pointer
Describes the default program block block at
which the Debugger looks for vanables and
statements The default evaluation environment
depends on how the Debugger 1s entered (See
Source Level Debugger User’s Guide)

e Language of Evaluation

The default language that the Debugger uses at
any given time 15 set to the source language of the
program block contaiming the evaluation environ-
ment pomnter The language of evaluation tells the
Debugger which language syntax rules to use 1n
evaluating expressions

® Program Blocks

The universal language-independent term pro-
gram block refers to any program umt in any of
the seven supported languages. The Debugger
uses the names of program blocks to idenuty vari-
ables and statements

Table 5 shows what program blocks are in the
context of each of the languages and explains how

the Debugger 1denufies the program blocks.

DFEBUGGER TERMS AND CONCEPTS 49

DEBUGGER TERMS AND CONCEPTS

PASCAL

Main program

Procedure

Function

TABLE 5
PROGRAM BLOCKS
Language Program Block ldentification
FORTRAN IV Main Program By name, if pro-
vided, in FOR-
TRAN
PROGRAM
statement and
by $SMAIN if
name not pro-
vided
Subroutine By name in
SUBROUTINE
statement
Function By name in
FUNCTION
statement
FORTRAN 77 (same as
FORTRAN
1v)
PL1 Subset G Procedure By procedure
name
BEGIN block By $BEGIN fol-

lowed by source
line number of
BEGIN state-
ment

By name, 1f pro-
vided, in PRO-
GRAM
statement and
by $§MAIN§$
if name not pro-
vided

Bv name 1n
PROCEDURE
statement

By name in
FUNCTION
statement

50

TABLE 5 (CONTINUED)

Language Program Block ldentifuation
COBOL 74 One complete By name speci-
program fied in PRO-
GRAM-ID
statement
' RPG II Main program By
RPGSMAIN
Subroutine Bv name in
BEGSR state-
ment
C Function By function
name

e Watch List

The watch list 15 an internal Debugger table hold-
ing the varables that you want to trace during
your program’s execution. Use the WATCH
command to specify the variables

e Special Characters

The Debugger uses special characters either to do
certain things or to be part of command syntax.
See the hist below. You or your System Admins-
trator can change the erase and kill characters to
other characters.

Erase character (')
Erases the previous character tvped The dou-
ble-quote 15 the system default

Kill character (?)
Causcs the line typed thus tar to be 1gnored.
The question mark 1s the svstem default.
Backslash (\)
Qualifies a program block name 1n breakpoints,
variable definitions and statement definitions.
Left bracket ([)

Begins an action hst.

DEBUGGER IERMS AND CONCEPTS 51

DEBUGGER [ERMS AND CONCEPTS 52
Right bracket (])

Terminates an action list

Quotation mark (" ')

Encloses a text string (You may use the double
quote 1f you change the erase character or use
the escape character with 1t) The Debugger in-
terprets the text string lLterally It ignores the
special meanings of separators, left and night
brackets, and the type of quotation mark that
did not begin the string (double quote if the
string 15 enclosed by single quotes and vice
versa) To include the same tvpe of quote in a
text string, supplv two consecutive marks

Separator character (;)
Separates multiple commands on one line The
semicolon s the Debugger default

Escape (~)
Entered directly i tront of special and regular
(nonspecial) characters, 1t gives them different
meanings It negates the special meanings of
certain special characters and gives special
meanings to normal characters The circumflex,
or up artow, 1s the Debugger default

SPECIAL
CONSIDERATIONS

FOR ALL
LANGUAGES

Close Data Files Before Using RESTART: If
your program is using one or more PRIMOS data
files and you have suspended execution, you may
not be able to use RESTART to rerun the program
unless you close the input file.

Enter the ' command, the PRINOS CLOSE com-
mand, and the name of the input file you want to
close.

Closing files with CLOSE ALL: If your program
closes file units indiscriminately (with CLOSE
ALL), speaty the FULL_INIT option on the
DBG command line. Do not give the CLOSE ALL

command when using quick 1mtalization.

On-units for ILLEGAL_INST$ or ANYS: If
your program creates an on-unit for the system
condition ILLEGAL_INSTS or ANYS, the on-
unit 15 mnvoked when breakpoints are encountered.

Therefore, 1f your program creates on-umts for
these conditions, do not use these Debugger com-
mands: BREAKPOINT, TRACEPOINT, STEP,
STEPIN, STRACE, and VTRACE.

SPECIAL CONSIDERATTONS 54

Using Specific Segments in the Range 4001
through 4037: It your program uses specific seg-
ments 1n the 4001 through 4037 range without al-
locating them 1n SEG, the Debugger may overwrite
them for its own storage.

Use the A/SYMBOL command for common
blocks n SEG. For example, the SEG command
A/SYMBOL TEMP1 4027 177777 tells the De-
bugger that the program 1s using segment 4027 for
common blocks

FOR FORTRAN IV

Compile With the -64V or -DYNM Option:
You must use the -64V or -DYNM option along
with the -DEBUG option when compiling a FOR-
TRAN 1V progiam

Messages for Completed Execution: If your pro-
gram block calls EXIT, you recetve one of the fol-
lowing messages.

e ‘“program stop at (statement-id)”

I

e “program et from (statement-id)

Exit Breakpoints and Alternate Returns: Pro-
gram blocks that execute alternate 1eturns execute a
GOTO statement to a label. The label value would
usually be supplied as an argument to the block. If a
program executes an altetnate return, you cannot
use these Debugger features:

e Exut breakpomts
e Exut tracepoints

e OUT command

e CALL command

e Entry/exit tracing
e Statement tracing

e Value tracing

FOR FORTRAN 77

Messages For Completed Execution: If a pro-
gram block calls EXIT, you receive one of these
messages:

* ‘“program stop at (statement-id)”
e ‘“program et from (statement-id)”

Suspended Execution at Entry: When execution
is suspended at an entry to a program block, you
cannot evaluate.

e Adjustable character arguments
e Adjustable arrays
* Assumed-size arrays

Execute the program up to the fust statement and
you can evaluate these values.

FOR PASCAL

There are no specal considerations for Pascal.

SPECIAL CONSIDERATIONS 35

SPECIAL CONSIDERATIONS 56

FOR PL1
SUBSET G

There are no special considerations for PL1 Subset

G.

FOR COBOL 74

Data Types in COBOL 74: Some of the names of
data types in the Debugger differ from their
COBOL equivalents as shown n Table 6.

TABLE ¢
DATA TYPE EQUIVALENTS
COBOL/DEBUGGER
COBOL 74 Debugger
ALPHANUMERIC DIS- alphanumeric
PLAY (PIC X)
NUMERIC DISPLAY tratling overpunch
(PIC 9)
COMPUTATIONAL binary-1
COMPUTATIONAL-1 computational-1
(real)
COMPUTATIONAL-2 computational-2
(double precision real)
COMPUTATIONAL-3 computational-3
(packed decimal)

Some Debugger data types do not exist in COBOL,
so vou cannot use some of the Debugger’s built-in
functions to evaluate expressions.

Breakpoints on Paragraph Headings: Breakpoints
and tracepoints may be set on paragraph headings
(the COBOL equivalent of labels) It a paragraph
heading begins with a number, put a § betore 1t to
distinguish 1t from a Ine number

One Program Block. COBOL. does not support
procedures as they are known to PASCAL and
PL1G However, a called program acts like a pro-
gram block

Remtializing With LET: When you use RE-
START, the Debugger does not remitialize the
variables inialized n the WORK-
ING-STORAGE section of the progiam To test
if the program 1s changing a vanable correctly, you

can remtialize some data variables with the LET
command, and then use RESTART

Record Element Names: Although the Debugger
lists record elements n the form
NAME1 NAME2 NAME3, you still have to
enter these elements in the COBOL format when
the language 1s defined as COBOL The COBOL
format 1s NAME]1 OF NAME2 OF NAME3

FOR RPG II

Setting Breakpoints: Set breakpoints only on cal-
culation statements, which are the only executable
statements

Using SOURCE: If vour source program or out-
put file 1s set up for 80 columns, some lines may
wrap around to the next ine when displaved with
SOURCE

SPECIAL CONSIDERATIONS 57

SPECIAL CONSIDERATIONS 58

Evaluating Variables in RPG II: The names of
data types 1n the Debugger differ from their RPG
II equivalents, as shown in Table 7.

TABLE 7
DATA TYPE EQUIVALENTS
RPG IT/DEBUGGER

RPG Variable Type Debugger Data Type

Field Alphanumeric or trailing over-
punch

Data Structure Alphanumeric

Array Alphanumeric or trailling over-
punch

Table Alphanumeric or trailling over-
punch

Table Index Binary-1 (15)

Indicator Binary-1 (15) external

Arrays and tables are one-dimensional arrays in
RPG II. Each table has an internal index that refer-
ences the currently selected element of the table.

e Reference the internal index by the name IX3yyy,
where yyy are the last characters in the name of
table TAByyy (for example, IX$ABC for TA-
BABC)

e Change the mternal index with the LET com-
mand

e Reference indicators by the name IND$xx, where
xx 15 any legal RPG idicator For example,
INDSL3 1s a reference for the L3 indicator The

value for an indicator 1s always 0 or 1

Using RESTART: It you have a suspended pro-
gram execution and you are using an input file, you
must close the file before using RESTART (To
use an mput file you speafy DISK as the input de-
vice

)

To start execution, enter

> | CLOSE filename
> RESTART

Input and Output: Close the mnput or output file
betore using SOURCE NAME i

* You have speafied DISK as the input device

* You have speafied DISK o PRINTERS as the
output device

® You want to examine either the input or the output
file while program execution 15 suspended

To examine an nput or output hle, enter

> | CLOSE filename
> SQURCE NAME filename

FOR C

Assignment: To assign values, use the evaluation
(-) command with any ot the special C assignment
operators (= += *= /= %=>>= <<= &=~ =
|= in addition to LET) The Debugger cvaluates expres-
sions exactly the same wav as a C program docs

Do not assign a valuc to an rvalue, for instance, an ex-
pression within parentheses It 1s an itlegal operation but
the Debugger does not report the error

SPFCIAL CONSIDERATIONS 59

SPECIAL CONSIDERA1IONS 60

Prime C Operators: The Debugger supports all
Prime C operators except the CAST operator De-
bugger operators for evaluating expressions are
functionally identical to the corresponding opera-
tors n the Prime C compiler and produce the same
expected side effects

Special Characters: The Debugger does not sup-
port the C escape character (/) Use the Debugger
escape character (~) Generate a null character (/0) by
evaluating a null string ()

Defaults for Constants: The detault for a floating
point constant 1s DOUBLE The default for an in-
teger constant 1s LONG

The ?: Construct: The Debugger does not support
the » construct Use the IF-ELSE construct in-
stead

DEBUGGER DEFINED
BLOCKS

The Debugger defines two progiam blocks that
contain all program blocks These blocks make it
possible to reference variables globally (outside the
current evaluation environment)

e $DBG

¢ 3EXTERNAL

$DBG PROGRAM
BLOCK

The Debugger defines three special Debugger-de-
fined variables within $DBG $MR, $COUNT,
and $COUNTERS, all buwlt-in functions are
“owned” by the $DBG block also

> $MR

Contamns the values of the machine 1egisters, as
shown 1n Table 8 on the next page

» $COUNT

Contains the value of the breakpoint counter for the
most recent breakpomnt or tracepomnt Useful 1n

DEBUGGER DEIINED BLOCKS 62

conditional breakpont action lists (with the IF
command).

TABLE 8
MACHINE REGISTERS
Regster
Category Description

SAVE-MASK Bit string indicaung which regis-
ters have been saved

\'% V-mode tegisters (A, B, L, X, Y,
E)

I I-mode registers (general registers
0 through 7)

BR Base registers (PB, SB, LB, XB)

KEYS Process keys

» 3COUNTERS

Counts information related to program size and
program symbols, as shown in the table below.
Valid only if you specify the -FULL_INIT option
on the DBG command line To display the values
enter.

> : $COUNTERS

The meaning of each type of count specified by
FCOUNTERS 15 listed below

STATEMENTS
Number of statements in procedutes compiled i

debug mode
OUTER_BLOCKS

Number of exteinal program blocks compiled 1n debug
and production modes

TOTAL_BLOCKS
Number ot external and internal program blochs com-
piled in debug and production modes
TOP_LEVEL_SYMBOLS
Number of declared symbols, not including structure
members
NON_TOP_LEVEL_SYMBOLS
Total number ot structure members
PERMANENT_STORAGE
Number of halfwords allocated by the Debugger for
the user program’s symbol table
DATA_FILE_SIZE
Size 1 halfwords of the Debugger data tile contained
in the program’s SEG file

FUNCTIONS

The Debugger defines bult-in funcuions for the
supported languages within $DBG You can use
these functions in expressions They are listed in the
introduction to the section ‘“‘Alphabetical List of
Debugger Commands.”

SEXTERNAL PROGRAM
BLOCK

Invisible to users, the Debugger's SEXTERNAL
program block may be used to reference external
variables that have not been declared in the current
evaluation enviionment.

DEBUGGER DEFINED BLOCKS 063

CONVERSION
CHARTS

Use the decimal to-octal chart only 1t you know how
to add or subtract in octal An asterisk (*) denotes
negative numbers when signed

Octal to Decimal Decimal to Octal
lto7 1to7 1to7 lto?7
10 8 8 10
119 911
12 10 10 12
13 11 11 13
14 12 12 14
15 13 13 19
16 14 14 16
17 15 15 17
20 16 16 20
30 24 17 21
40 32 18 22
50 40 19 23
60 48 20 24
70 56 30 36
100 64 40 50
200 128 50 62
300 192 60 74
400 256 70 106
500 320 80 120
600 384 90 132
700 448 100 144

Octal to Decimal Decimal to Octal

2000 1024 300 454
3000 1536 400 620
4000 2048 500 764
5000 2560 600 1130
6000 3072 700 1274
7000 3584 800 1440
10000 4096 900 1604
20000 8192 1000 1750
30000 12288 2000 3720
40000 16384 3000 5670
50000 20480 4000 7640
60000 24576 5000 11610
70000 28672 6000 13560
100000 32768* 7000 15530
177777 65535* 8000 17500
9000 21450

10000 23420

20000 47040

30000 72460
*40000 116100
*50000 141520
*60000 165140
*635535 177777

* Indicates negative numbers when signed

CONVERSION CHARTS 65

CONVERSION CHARTS

66

Octal
Value

200
201

202
203
204
205
206

207
210

211
212

213
214
215
216
217
220
221
222
223
224
225

226

ASCIT
Char

NULL
SOH

STX

ETX
EOT
ENQ
ACK

BEL
BS

HT
LF

vT
FF
CR
SO
S1
DLE
DC1
DC2
DC3
DC4
NAK

SYN

Comments/ Prime Usage

Null character—filles
Start of header (commu-
nications)

Start of text (communica
tions)

End of text (communica-
tions)

End of transmission
(communications)

End of I D (communica-
tions)

Acknowledge athrmative
(communications)
Audible alaim (bell)
Back space onc position
(carriage contiol)
Physical horizontal tab
Line feed, 1gnored as ter-
minal mput

Physical vertical tab (cat-
tiage control)

Form feed (cairage con-
trol)

Cartiage 1eturn (carniage
control) (1)

Shift out (switch to alter-
nate character sct) (2)
Shift in (1eturn to stan-
dard character set)

Data link escape (3)
Device control 1 (4)
Device control 2 (5)
Device control 3 (6)
Device control 4 (7)
Neganve acknow ledge-
ment (communications)
Synchronzation (commu-
nications)

ASCII CHARACTER SET (NON PRINIING)

Control

A

Char

- Q=m m g O wo»

< ¢ HYmWEWO Zz Z - R —

ASCI] CHARACITR SFI (NON PRINIING) (CONTINLFD)

Octal ASCIT Control
J Value Char Comments/ Prime U sage Char

227 ETB End of transmission block

236 RS Record separator
237 US Unut separator

Notes
(1) Interpreted as NL (that 1s, line feed) at the
application program level
(2) Examples of alternate character sets include
red ribbon characters or graphics characters
(3) Has multiple functions, including
e From a termmal aboits (quits) user pro
grams and returns to PRIMOS level
* Within a file specifies relauve copy, next
byte gives number of byvtes to copyv from
coriesponding position of previous Line
(4) Has muluple tuncuons including
e from a taminal NON, resumc transmis
sion
o Within a file relative hoiizontal tab, next
byte specifies number of spaces to insert
(5) Can have muluple functions, including
e Within a hle halt hne feed forward (car
riage control)
(6) Has muluple tunctions, including
® From a tcrminal XOFF, suspends (freezes)
transmission
e Within a hle relative verncal tab, next byte
specifics number of Iines to inscrt
(7) Can have multiple tunctions including
¢ Wathin a file halt hne fecd revcrse (carnage
control)

CONVERSION CH IR1S 67

(communications) ~ W
230 CAN Cancel ~ X
231 EM End of Medium ~
232 SUB Subsutute ~Z
233 ESC Escapc ~
234 FS INle separator 0\
235 GS Group separator ~]

>

11aa e (8 — Lt (9) ¢ LLT
(1)~ 9L¢ (L) 9¢¢ < 9.7
{ SLE] 4%} = ¢.7

| ¥LE \ et > +1T

} €Ly] £g¢ £LT

z (42> Z Tt 7Lz

4 g A €€ 6 122

X 0LE X 0L€ 8 0Lz
" £9¢ M LTt L L9T
A 99¢ A 9zt 9 997

n $9¢ n se¢ S £97

1 +9¢ L +T¢ 14 +9¢C

s £9¢ S £t € £97

1 79t A gy z 79t

b 19¢ 0 s 1 197

d 09¢ d 0T] 09t

0 Ay 0 L1t / LST

u 9 ¢ N 91t 95T
w §8¢ N (98 — $ST

! tut 1 ti€ (s) $LT

| £5t A 1€ + £57

r iy [7l * 787

1 Tey 1 11 (1¢¢

y Ost H D1t) 0ST

3 Lt D) L0t (+) LT

J 9tt a 90¢ v 9+

> St q s0t W S+

p $¥e a 0L (£) s ¥+

> e o) £0¢ # ¢4

q it q 70¢ (@) e

1 I+ v 10t | 1+
(6« 0tt ®) 00¢ (DADVIS 0¥
43170 Y7) My [4204017) MZ WYY Y

oSy TVIDO {IISF T¥LIO0 ISV TFID0
(ONILNII) LFS dALOV IV HO TIOSF

&9 SLYVHD NOISHTANOD

Notes

(1) Space torward one position

(2) Terminal usage. default erase character (erases
previous character)

(3) (£) n British use

(4) Apostrophe/single quote

(5) Comma

(6) Terminal usage default Kill character (kills
line)

(7) 1963 standard (up-arrow)

(8) 1963 standard (back-artow)

(9) Grave accent
(10) 1963 standard ESC
(11) Rubout, ignored, unless the user has assigned 1t
a particular action (for example, as the erase or kall
character)

CONI'ERSION CIHARTS

	Front Cover
	
	Title Page
	1
	Credits
	2
	Table of Contents
	3
	Documentation Conventions
	4
	5
	Glossary of Prime Terms
	6
	7
	Summary of Debugger Features
	8
	9
	10
	11
	12
	13
	Invoking the Debugger
	14
	15
	16
	17
	Command Format Conventions
	18
	19
	20
	21
	Alphabetical List of Debugger Commands
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	Debugger Terms and Concepts
	48
	49
	50
	51
	52
	53
	54
	Special Considerations
	55
	56
	57
	58
	59
	60
	61
	62
	Debugger Defined Blocks
	63
	64
	65
	Conversion Charts
	66
	67
	68
	69
	70
	71
	72
	
	Back Cover

