
Prime Computer, Inc.

Source Level
Debugger

Rev. 19.2
Debugger Rel. 1.0-19.1

DOC8916-1XA

SOURCE LEVEL
DEBUGGER

PROGRAMMER'S
COMPANION

Revision 19.2
and Debugger Release 1.0-19.1

DOC8916-1XA

This document reflects the software
as of Master Disk Revision 19.2 and the

Debugger's Independent Product Release (IPR)
1.0-19.1.

by

David A. Kaye
assisted by

Marion Shepp

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The Programmer's Companion is a series of pocket-size, quick-

reference guides to Prime software products.

Published bv Prime Computer, Inc.
Technical Publications Department
500 Old Connecticut Path
Framingham, Massachusetts 01701

Copyright 1985 bv Prime Computer, Inc. Printed in USA. All

rights reserved.

The Programmer's Companion and P R I M O S are registered

trademarks of Prime Computer, Inc.

T h e information contained in this document is subject to change

without notice and should not be construed as a commitment by

Prime Computer. Prime Computer, Inc. assumes no responsibil­

ity for errors that mav appear in this document.

Note

For complete information on the Source Level Debugger, see

Source Level Debugger User's Guide.

C R E D I T S

Editing Pamela I. Pierson

Technical Support Paul Cioto

Larrv Epstein

Debra Minard

Design Susan Windheim

Production Leo Maldonado

Typesetter American Stratford-

Graphic Services, Inc.

Printer Winthrop Printing Company

TABLE OF CONTENTS

Documentation Conventions 4

Glossary of Prime Terms 6

Summary of Debugger Features 8

Invoking the Debugger 14

Command Format Conventions 18

Alphabetical List of Debugger Commands 22

Debugger Terms and Concepts 48

Special Considerations 53

Debugger Defined Blocks 61

Conversion Charts 64

ASCII Character Set 66

Printing History
First Printing, January 1985

DOCUMENTATION
CONVENTIONS

Abbreviations: Indicated by rust-colored letters.

-NOCOMPATIBILITY

Uppercase: Identifies command words, compiler
options, and other words that must be entered liter­
ally. Enter them in either uppercase or lowercase.

RESTART

Lowercase: Identifies arguments. Substitute an ap­
propriate numerical or text value.

LOADSTATE filename

Square Brackets |]: Indicate an optional keyword
or argument.

-LISTING pathname
YES
NO

Braces j 1: Indicate a choice of arguments and/or
key words. At least one must be selected.

[ON
ETRACE ARGSS

[OFF

Ellipsis . . . : Indicates that the preceding parameter
may be repeated.

DBG program-name [option-1 [option-2 . . .]]

Angle Brackets <>: Used literally to separate ele­
ments of a pathname.

<FOREST>BEECH>LEAF

Parentheses () : Must be entered exactly as shown.

[(argument-list)]

Hyphen - : Identifies a P R I M O S command line
option. Must be entered literally.

-CHECKOUT

DOCUMENTATION CONVENTIONS

GLOSSARY OF
PRIME TERMS

64V Mode: See V Mode.

Master File Directory (MFD)
A special directory that contains the names of all
User File Directories (UFDs) on a particular disk
or partition. In PRIMOS, there is one M F D for
each logical disk. See User File Directory.

PRIMOS
Prime Computer's operating system.

Pathname
A multi-part name that specifies a particular
P R I M O S file system object. A full pathname
consists of the names of a disk volume, a UFD, a
chain of subdirectories, and a target file system
object.

SEG Utility
SEG is the utility used to load and execute V-
mode programs.

Source File
A file containing programming language state­
ments in the format required by the appropriate
compiler or assembler.

User File Directory (UFD)
A directory listed in the MFD of a particular disk
volume or partition. See Master File Directory.

VMode
The addressing mode used for multi-segmented
programs under PRIMOS.

GLOSSARY OF PRIME TERMS

SUMMARY OF
DEBUGGER FEATURES

This section summarizes the debugging command
features that help you use the Debugger to solve
problems in your program execution.

PROGRAM CONTROL

BREAKPOINT
Suspends program execution to examine program data
strategically.

CALL
Calls a program block from Debugger command level.

CLEAR
Deletes a breakpoint or a tracepoint.

CLEARALL
Deletes all breakpoints and tracepoints in either the
debugging environment or in a specific program block.

CONTINUE
Continues program execution following a breakpoint,
single-step operation, or an error condition.

GOTO
Moves the execution environment pointer to a state­
ment in an active program block.

IF
Executes an action list conditionally, depending on the
result of an expression.

IN
Continues execution until the current program block
calls another program block.

L I S T
Displays the attributes of one breakpoint or tracepoint.

L I S T A L L
Displays the attributes of all the breakpoints or trace-
points you have set.

M A I N
Displays the current main program or designates a
program block to be recognized as main program.

O U T
Continues execution until the current program block
returns.

R E S T A R T
Starts or restarts your program's execution.

S T E P
Executes a given number of statements at a time step­
ping across any called program block.

S T E P I N
Executes a given number of statements at a time step­
ping into anv called program block.

U N W I N D
Erases the call/return stack. (The execution environ­
ment pointer becomes undefined.)

DATA MANIPULATION

Evaluates a variable or expression.

A R G U M E N T S
Displays the values of all arguments passed to a pro­
gram block.

L A N G U A G E
Displays or changes the name of the language the De­
bugger uses to evaluate expressions.

L E T
Assigns a new value to any variable defined by the
program.

P M O D E
Sets the print mode used to evaluate a variable.

SUMMAR Y OF DEBUGGER FEATURES 9

SUMMAR Y OF DEBUGGER FEATURES 10

T Y P E
Examines the data type and other attributes of a vari­
able or expression.

TRACING

E T R A C E
Displays a message each time the execution calls or re­
turns from a program block (entry/exit tracing).

S T R A C E
Displays a trace message before every program state­
ment or labelled statement is executed (statement trac­
ing)-

T R A C E B A C K
Looks at the contents of the call/return stack, which is
a list of program block calls currently active in pro­
gram execution.

T R A C E P O I N T
Displays a message each time the Debugger encoun­
ters a statement, label, or entry/exit of a program
block.

U N W A T C H
Removes one or more variables from the watch list.

V T R A C E
Temporarily limits value tracing to the entry or exit of
a program block or turns off value tracing without dis­
turbing the watch list.

W A T C H
Displays a message whenever the value of one or more
variables changes during program execution (value
tracing) bv adding one or more variables to the watch
list.

W A T C H L I S T
Displays the names of variables currently in the watch
list.

DEBUGGER CONTROL

A C T I O N L I S T
Displays a breakpoint action list or macro command list
immediately before it is executed.

E N V I R O N M E N T
Changes or verifies the evaluation environment.

E N V L I S T
Displays the current evaluation environment and the
contents of the evaluation environment stack.

P S Y M B O L
Displays a list of Debugger special symbols (ERASE,
KILL,' ESCAPE, S E P A R A T O R , W I L D , and
BLANKS) and their current character values.

R E S U B M I T
Invokes the Debugger's command line editor to edit
the most recent command.

S Y M B O L
Changes the character value of a special symbol.

INFORMATION REQUEST

INFO
Displays attributes of a program block or statement.

S E G M E N T S
Displays a list of the segments in memory currently in
use.

S T A T U S
Displays information on the state of vour current de­
bugging environment.

W H E R E
Verifies the location of the execution environment
pointer or finds the program location that corresponds
to a given memory address.

MISCELLANEOUS

!
Enters and executes certain P R I M O S commands from
Debugger command level.

*
Executes the current command line a specific number
of times or indefinitely until the Debugger finds an
error (or you press the break key or C O N T R O L - P) .

SUMM/1R Y OF DEBUGGER FEATURES 11

SUMMAR Y OF DEB UGGER FEATURES 12

AGAIN
Repeats the command line just executed.

C M D L I N E
Enters your programs command line arguments from
Debugger command level.

H E L P
Gets help with command syntax definitions.

L O A D S T A T E
Loads the contents of SAVESTATE file into a de­
bugging session.

M A C R O
Creates a macro to take the place of one or more De­
bugger commands.

M A C R O L I S T
Displays one or all of your currently defined macros
and their command lists.

P A U S E
Temporarily suspends debugging session and returns
to P R I M O S command level.

Q U I T
Returns to P R I M O S command level.

S A V E S T A T E
Saves all of your breakpoints, tracepoints, and macros
in P R I M O S files for future use.

S O U R C E
Looks at, but does not change, source files using Edi­
tor subcommands.

VPSD
Invokes the 64V-mode Prime Symbolic Debugger
(VPSD). (machine level debugger) from Debugger
command level.

COMMAND LINE EDITOR

Use the Debugger's command line editor to modify
the most recent command line as well as any break­
point action list or macro command list. Invoke the
editor with the RESUBMIT, BREAKPOINT
-EDIT, or MACRO -EDIT command. Table 1
summarizes the command line editor subcommands,
which are entered at the editor's colon (:) prompt.

TABLE 1
COMMAND LINE EDITOR SUBCOMMANDS

Subcommand

A

D

F

I

L

O

Q

carriage return

space

Function

Appends the text that follows A to
the end of the line.

Deletes the characters under
which the D is positioned.

Makes the character under which
the F is positioned the first charac­
ter of the command line.

Inserts the text that follows I into
the line, starting after the charac­
ter under which the I is posi­
tioned.

Makes the character under which
the L is positioned the last charac­
ter of the command line.

Overlays the characters that fol­
low O onto the line, starting at the
character under which the O ap­
pears.

Aborts the editing session and re­
turns to Debugger command
level, but does not replace original
command line.

Finishes the editing session and
replaces original command line.

Moves the cursor to the right one
position.

SUMMARY OF DEBUGGER FEATURES 13

INVOKING
THE DEBUGGER

The Source Level Debugger is Prime's interactive
debugging tool for its seven supported high-level
languages. In order to use the Debugger, you must
compile and load your program successfully. Enter
the Debugger during the execution phase. The fol­
lowing steps show the procedure for invoking the
Debugger.

1. COMPILING WITH
THE -DEBUG OPTION

You must tell the compiler that you intend to use
the Debugger by entering the - D E B U G compile-
time option on the command line.

compile-command program-name -DEBUG

The compile-command is one of the language-spe­
cific commands listed in Table 2. program-name is
the name of the program.

TABLE 2
COMPILE COMMANDS, SOURCE FILE

SUFFIXES, AND LIBRARIES

Language

FORTRAN IV
FORTRAN 77
Pascal
PL1 Subset G
COBOL 74
RPG II V-mode
C

Compile
Command

FTN
F77
PASCAL
PL1G
CBL
VRPG
CC

Compiler
Source

File
Suffix

.FTN

.F77

.PASCAL

.PL1G

.CBL

.RPG

.CC

Language
Library

None
None
PASLIB
PL1GLB
CBLLIB
VRPGLB
CCLIB

Compiling F O R T R A N IV Programs: When de­
bugging in F O R T R A N IV, you must compile your
program with the -64V option along with the
- D E B U G option:

FTN program-name -64V -DEBUG

2. LOADING WITH
T H E SEG LOADER

The next step is to load your program as follows.

OK, SEG -LOAD
[SEG rev 19.21
$ LOAD program-name
$ LIBRARY Ianguage-Iibrary
$ LIBRARY
LOAD COMPLETE
$ QUIT
OK.

INTO KING THE DEBUGGER 15

INVOKING THE DEBUGGER 16

The language-library is the appropriate language
library listed in the preceding table.

3. ENTERING DEBUGGER
WITH THE

DBG COMMAND

Enter the Debugger by issuing the DBG command.

DBG program-name [option-1 [option-2 . . .]]

The program-name here is an executable (SEG)
file, option-1 and option-2 . . . are optional com­
mand line parameters. DBG command line options
are described below.

-LOADSTATE pathname
-LOADSTATE allows you to restore the contents of
a SAVESTATE file—your saved breakpoints, trace-
points, and macros—upon invoking the Debugger.
The pathname is the pathname of the file you want to
restore.

-VERIFY, SYMBOLS
Checks all external symbol declarations for consistency
in all program blocks within the executable file. The
Debugger displays a warning message during initiali­
zation if it finds inconsistent external symbol declara­
tions.

-NO_VERIFY_ SYMBOLS
Suppresses external symbol checking, speeding up ini­
tialization. (-VERIFY_SYMBOLS is the default.)

-VERIFY_PROC
Checks the procedure text so you can set statement
breakpoints. The Debugger gives a warning message if
it finds a statement for which the procedure text is un­
suitable for placing a breakpoint.

- N O _ V E R I F Y _ P R O C
Specifies that the procedure text is not to be inspected
for improper format regarding placement of break­
points. (-VERIFY J P R O C is the default.)

- C O M I N P L T
Specifies that the Debugger accept input from a com­
mand input file or CPL program.

- N O _ C O M I N P U T
Specifies that the Debugger accept input from only the
terminal, not from a command input file. (- N O _ C O -
M I N P U T is the default.)

- F U L L _ I N I T
Tells the Debugger to read and process the entire
symbol table from the specified executable file before
entering command mode. Normally, the debugger
reads from the symbol table only when it needs the in­
formation. Use this option to obtain a complete exter­
nal symbol mismatch summary at initialization time.
- F U L L _ I N I T approximately triples initialization
time.

- Q U I C K _ I N I T
Tells the Debugger to load, at initialization time, only
the information it needs to identify each program
block. The debugger loads the rest of the symbol table
as required during the debugging session.
(- Q U I C K _ I N I T is the default.)

INVOKING THE DEBUGGER 17

COMMAND FORMAT
CONVENTIONS

GENERAL FORMAT

Enter Debugger commands at the prompt charac­
ter >. The general format is:

> COMMAND-NAME argument-1
argument-2

argument-1 and argument-2 . . . are one or more
command arguments that may be:

• Options that appear in uppercase in the command
format and that you enter literally as shown.

• Variables, expressions, symbol names, activation
numbers, or statement identifiers that appear in
lowercase in the command format. You substitute
a suitable value.

ARGUMENT FORMATS

Variables: The rules for identifying variables within
the Debugger are the same as the rules of host lan­
guage. The syntax is expanded so you can reference
any variable in the debugging environment. There
are three possible formats:

• variable-name
Specifies a variable in the current program block.
variable-name can possibly be qualified and/or
subscripted according to the rules of the host lan­
guage.

• program-block-namc \ variable-name

Specifies a variable in the most recent (or only) ac­
tivation of a named program block.

• program - block - name \ activation - number \ vari­
able-name

Specifies a variable in a named program block and
activation.

Statements: There are six possible ways to identify
a statement; three use source file line numbers and
three use statement labels.

Statement labels are label numbers or label con­
stants in any of the seven supported languages.
(Precede labels that begin with a digit with a dollar
sign ($) to distinguish them from source line num­
bers.)

You may specifv the program block name with a
backslash (\) directly before the information in any
of the six formats:

program-block-name \

If you do not supply program-block-name, the De­
bugger looks for the statement in the current pro­
gram block. Below are the six formats:

• source-line

source-line is a source file line number. When
multiple statements are on a single line, this format
specifies the leftmost statement at the source file
line number.

COMMAND FORMAT CONVENTIONS 19

COMMAND FORMAT CONVENTIONS 20

source-linestatement-offset

statement-offset is the number of statements to
count from the first statement on a multistatement
line such as an IF statement whose T H E N clauses
are on a different line of text. (The first statement
has an offset of 0.)
source-line(insert-line)
source-linc(insert-line+statement-offset)

insert-line is a line number in a SINSERT or
^ I N C L U D E file. This format is for S INSERT or
% I N C L U D E files that contain executable state­
ments.

statement-label

Identifies a statement bv label. Precede references
to F O R T R A N , Pascal, and COBOL 74 state­
ment numbers with a dollar sign to distinguish nu­
meric labels from source line numbers. See Table
3.

TABLE 3
CHARACTERISTICS OF STATEMENT

Language

FORTRAN IV

FORTRAN 77

Pascal

PL/I-G

LABELS

Type

Numeric

Numeric

Numeric

Alphanumeric

Characteristics

Referenced with
preceding dollar
sign (S).
Referenced with
preceding dollar
sign ($).
Declared in
LABEL declara­
tion part of pro­
gram; referenced
with preceding S.
First character
must be alpha­
betic; not ref­
erenced with $.

TABLE 3 (CONTINUED)

Language

COBOL 74

Type

Alphanumeric

RPG II V-mode Alphanumeric

Alpl lanumeric

Characteristics

COBOL para­
graph name or
section name;
referenced with
preceding S only
when first char­
acter is numeric.
RPG tag. First
character must
be alphabetic;
not referenced
with $.

First character
must be alpha­
betic; not ref­
erenced with S.

statcment-label-t-line-ofFset

line-offset is the number of source lines following
the line containing statement-label. The ref­
erenced statement is always the leftmost statement
on the line.

statement-label+line-offset+statement-offset

statement-offset is the number of statements to
count from the first statement on a multistatement
line. (The first statement has an offset of 0.)

COMMAND FORMAT CONTENTIONS 2!

ALPHABETICAL LIST OF
DEBUGGER COMMANDS

language-name[,print-mode] expression
[print-mode]

The : (evaluation) command evaluates a variable or
an expression.

The optional language-name is the language of
evaluation; vou are evaluating with the syntax and
semantic rules of this language. If not specified, the
language of evaluation is the host language.

The print-mode specifies the format for the result.
The print-mode can be ASCII, BIT, DECIMAL,
F L O A T , HEX, or OCTAL. (See P M O D E com­
mand.)

The expression is the variable or expression you
want to evaluate. The expression can be a variable
or a more complex expression. Where applicable,
you may evaluate:

Simple variables Arrays

Array elements Array cross sections

Structures (records) Structure members (fields)

Pointer-referenced data All legal expressions involving
any of the above

Evaluating Arrays: To reference a portion of an
array, specify a star extent or a bound pair.

Star extent To display or operate on the full range of
a dimension, substitute a star (*) for the
corresponding subscript. For example:

> : a r r a y - n a m e (* f num)

num is the index tor the second dimen­
sion.

Bound pair To display or operate on a limited range
of a dimension, specify bounds in the
form:

lower-bound . . . upper-bound

For example:

array-name . . . (3 . . . 7)

Lower-bound and upper-bound are any
valid expressions that reduce to integer
values. Enter the ellipsis (. . .) literally.

Functions: The Debugger supports standard
F O R T R A N , PL1G, Pascal, and C language func­
tions. You can use the evaluation command with
these functions to evaluate expressions. Table 4 on
the next page lists supported language functions.

• ! primos-command-line

The ! command executes internal PRIMOS com­
mands from Debugger command level.

The primos-command-line contains one or more
internal PRIMOS commands that you want to exe­
cute from the Debugger. (External commands in­
terfere with the memory image of the Debugger or
your program.)

Internal and external commands are summarized in
the PRIMOS Commands Reference Guide.

LIST OF DEBUGGER COMMANDS 23

LIST OF DEBUGGER COMMANDS 24

TABLE 4
PLJG, PASCAL, FORTRAN AND C

ABS
ACOS
ADD
ADDR
ADDREI.
AFTER
AIMAG
AINT
ALOG
ALOGIO
AMAXU
AMAX1
AMINO
AMIN1
A MOD
AND
ANIN I
ARCTAN
ASIN
ATAN
ATAN2
ATAND
ATANH
BASEPTR
ISASEREL
BEFORE
BIN
BINARY
BIT
BOOL
BYTE
CABS
COOS
CEIL
CEXI'
CHAR
CHARACTER
CUR
CLOG
CMPLX
CMPX
COLLATE

SUPPORTED FUNCTIONS
COMPLEX
CONJG
COPY
COS
COSD
COSH
CSIN
CSQRT
DABS
DACOS
DASIN
DATAN
DATAN2
DATA
DBLE
DB1.EQ
DCMPI.X
DCOS
DCOSII
DDIM
DEC
DECA'I"
DECIMAL
DELETE
DEXP
DIM
DIMENSION
DINT
DIVIDE
DLOG
DLOG10
DMAX1
DMIN1
DMOD
DNINT
DPROD
DSIGN
DS1N
DSINH
DSQRT
DTAN
DTANH

EXP
FACET
MM 1)
FLOAT
FLOOR
HBOl'ND
HIGH
IA US
ICI1AR
[DIM
IDINT
IDNINT
IFIX
IMAG
INDEX
INSERT
INT
I \ 1 1
I NTS
IQINT
IQNINT
IRND
ISIGN
LBOl'ND
LEN
IENGTH
LGE
LGT
UNKPTR
LEE
LET
EN
LOG
LOG
LOGIC
LOG 2
LOW
l.S
LT
LTR1M
MAX
MAXO

MAX]
MIN
MINI)
MINI
MOD
MULTIPLY
NINT
NOT
NELL
ODD
OFFSET
ONCODE
OR
ORD
POINTER
PRED
PTR
QABS
QACOS
OASIN
QATAN
QATAN2
OCOS
QCOS11
QDIM
QEXP
QEXT
QEXTD
QINT
QLOG
QLOGIO
OMAX1
QMINI
QMIN1
QMOD
QNINT
QPROD
QSK;N
QSIN
OS1NII
QSQRT
QTAN

QTANH
QUAD
RANK
REAL
REE
REVERSE
RING
RNI)
ROUND
RS
RT
SEARCH
SEGNO
SHIT
SIGN-
SIN
SIND
SINH
SI/.EOF
SNGI.
SQR
SQRT
STACKBASE
STACKPTR
SIR
STRING
SUBSTR
SUBTRACT
SUCC
FAN
1 AND

TANH
TIME
TRANSLATE
TRIM

TRUNC
I'NSPEC
UNSTR
VERIFY
XOR

• * [value]

The * command executes the current command line
a specific number of times or indefinitely.

The value is the optional number ot times YOU want
to repeat the command line. If you do not specify a
value, the command line repeats until the Debugger
finds an error or until vou press the break key or
C O N T R O L - P .

The * must be the last command on the command
line and separated from the preceding commands bv
a semicolon (command separator).

• ACTIONLIST SUPPRESS I
I PRINT J

A C T I O N L I S T P R I N T displays the commands in
a breakpoint action list or in a macro command list.
A C T I O N L I S T SUPPRESS deactivates AC­
T I O N L I S T P R I N T so no lists are displayed. The
default is SUPPRESS.

• AGAIN

AGAIN repeats the most recently executed De­
bugger command line. Enter the AGAIN com­
mand bv itself after the > prompt.

• ARGUMENTS [program-bIock-name[\activa­
tion-number]]

A R G U M E N T S displays the values of the argu­
ments passed to the program block defined bv the
evaluation environment pointer.

program-block-name is the name of the program
block whose arguments vou want to display, activa­
tion-number is a particular activation of a specified
program block.

LIST OF DEB I :GGER COMMANDS 25

LIST OF DEBUGGER COMMANDS 26

• BREAKPOINT [breakpoint-identifier] [ac­
tion-list] [options]
[-AFTER value] [-BEFORE
value]
[-EVERY value] [-COUNT
value] [-EDIT]

-IGNORE
-NIGNORE

BREAKPOINT suspends the execution of your
program. The breakpoint-identifier identifies
where you want to suspend execution, which can be
an executable statement, statement label, or an
entry to or exit from a program block. If you don't
specify a breakpoint-identifier, the Debugger uses
the value of the execution environment pointer. See
the list of options and functions that follows.

The action-list specifies one or more Debugger
commands to be executed at the breakpoint. T o
create an action list, enclose the list of Debugger
commands within a pair of square brackets ([]) and
separate the commands with semicolons.

-AFTER
Causes the breakpoint to occur only when the value of
the breakpoint counter exceeds the value of the speci­
fied value following -AFTER

-BEFORE
Causes the breakpoint to occur only when the value of
the breakpoint counter is less than the value following
-BEFORE

-EVERY
Causes the breakpoint to occur every n iterations
through the breakpoint location, where n is the value
following -EVERY

-COUNT
Can be used to set the breakpoint counter

-IGNORE
Sets the ignore flag, suppressing the breakpoint

-NIGNORE
Deactivates the ignore flag

-EDIT
Invokes the Debugger's command line editor so you
can modify a breakpoint action list

Identify entry/exit breakpoints by one of the fol­
lowing three formats:

• BRK program-block-name\ \ brcakpoint-tvpe

• BRK \breakpoint-type

• BRK program-block-name\

The breakpoint-type can be either ENTRY or
EXIT. The program-block-name is the name of
the called program block where you want to break.

Breakpoints at statements or statement labels sus­
pend execution immediately before the statement or
labeled statement.

Breakpoints at the entry of a program block sus­
pend execution inside the called program block im­
mediately after argument transfer. Exit breakpoints
suspend execution outside the program block after
the block has returned.

• CALL variable [(argument-list)]

CALL allows you to call a program block from De­
bugger command level.

The variable is the name of the program block you
want to call. The argument-list is a list of expres­
sions, or "parameters," that are supplied, or
"passed," to the program block according to the
rules of the host language. In the argument-list, ex­
pressions are separated bv commas.

LIST OF DEBUGGER COMMANDS 27

LIST OF DEBUGGER COMMANDS 28

When you give a CALL command, the Debugger
evaluates each argument and calls the block, sup­
plying the values as arguments. To call a block
within another external program block, specify the
block name or external block name followed bv a \
(backslash) before the variable.

• CLEAR [breakpoint-identifier]

CLEAR deletes one breakpoint or one tracepoint.

The breakpoint-identifier must be any valid
breakpoint or tracepoint identifier, such as a source
line number or statement label. Used by itself, with
no breakpoint identifier, CLEAR deletes the
breakpoint or tracepoint specified by the execution
environment pointer.

• CLEAR ALL [program-block-name
[-DESCEND]] -BREAKPOINTS

TRACEPOINTS

CLEARALL deletes all breakpoints and trace-
points in either the debugging environment or in a
specific program block.

The program-block-name is the name of the pro­
gram block containing the breakpoints and/or
tracepoints that you want to delete.

-DESCEND
Deletes all breakpoints and tracepoints in a specified
program block and in all the nested program blocks or
"descendants" contained in the specified block

-BREAKPOINTS
Deletes only breakpoints

-TRACEPOINTS
Deletes only tracepoints
Used without any arguments, CLEARALL deletes all
breakpoints and tracepoints in the debugging environ­
ment.

• CMDLINE

C M D L I N E allows you to enter the command line
arguments that your program expects from Debug­
ger command level. After typing the command, you
get the prompt:

E n t e r command l i n e :

• C O N T I N U E

C O N T I N U E resumes program execution follow­
ing a breakpoint, a single-step operation, or an error
condition. Program execution resumes at the loca­
tion specified by the execution environment pointer.

• ENVIRONMENT
program-block-namef \ activation-number]
-POP

ENVIRONMENT changes the evaluation en­
vironment, which is the program block the Debug­
ger considers current.

The program-block-name is the name of the pro­
gram block that you want as the new evaluation en­
vironment. The activation-number specifies a
particular activation of program-block-name. The
- P O P option removes or "pops" an environment

LIST OF DEBUGGER COMMANDS 29

LIST OF DEBUGGER COMMANDS 30

from the evaluation environment stack. Used by it­
self, with no argument, E N V I R O N M E N T dis­
plays the name of the current evaluation
environment.

• ENVLIST

ENVLIST displays the current evaluation environ­
ment and the contents of the evaluation environ­
ment stack.

[ON 1
• ETRACE ARGS

I O F F J
E T R A C E displays a trace message each time a
program block is called or returned. This is known
as entry tracing.

ON
Displays a trace message when each program block is
called and returned

ARGS
Displays trace messages at the entry and exits to called
program blocks and displays the values of arguments
passed to each called block at each entry (but not each
exit)

OFF
Turns off entry tracing

• G O T O [program-block-name\ factivation-num­
ber \]]statement-identifier

G O T O moves the location of the execution en­
vironment pointer to another statement in your
program.

The program-block-name is the name of the active
program block containing the statement to which
you are transferring control. The statement-identi­
fier is the statement to which you are transferring
control. It can be a source line number, statement
label, or any other valid identifier. The activation-
number specifies that control is transferred to a
statement in a particular activation of a program
block.

After a G O T O , the evaluation environment pointer
is set to the new program block. If the specified
program block is written in another language, the
debugger sets the language of evaluation to that
language.

• HELP
-LIST
-SYM-XIST
command-name
syntax-symbol

HELP displays information about Debugger com­
mands and features.

The command-name is the name of any Debugger
command for which you want command line syntax
information. The syntax-symbol is any symbol used
in command syntax descriptions. The -LIST option
lists all Debugger commands in alphabetical order.
The -SYM_LIST option lists all Debugger syntax
symbols used in Debugger command line syntax.

• IF expression action-list [ELSE action-list]

IF executes a breakpoint action list or any Debug­
ger command conditionally, depending on the result
of an expression.

LIST OF DEBUGGER COMMANDS 31

LIST OF DEBUGGER COMMANDS 32

The expression is any valid expression in the host
language. The expression can be either true or
false. If the expression is true, the first action list
immediately following the expression is executed,
and the ELSE clause, if there, is ignored. If the ex­
pression is false, the first action list is ignored, but
the ELSE action list, if there, is executed. {See dis­
cussion of the action list in "Debugger Terms and
Concepts.")

You can use an IF command clause within the ac­
tion list of another IF command clause to form a
nested action list.

• IN

IN continues program execution until the next pro­
gram block is called and suspends execution inside
that block immediately before the first executable
statement. Do not use G O T O at this point, because
it may prevent initialization of the program block.
Issue a STEP command before using G O T O .

• INFO program-block-name \
statement-identifier

INFO displays information about a program block
or statement.

The program-block-name is the name of the pro­
gram block you want information about. The state­
ment-identifier is the executable statement you
want information about. For a statement, the De­
bugger displays the memory address of the first in­
struction.

• LANGUAGE

FORTRAN
F77
PL1G
PASCAL
COBOL
RPG
C

LANGUAGE changes the language of evaluation,
which is the language the Debugger uses to evalu­
ate expressions (also called host language).

Used without an argument, LANGUAGE displays
the name of the current host language. The default
language of evaluation is the source language of the
program block containing evaluation environment
pointer. T o change the current language to another
language, use the appropriate argument.

• L E T variable = expression

L E T assigns a new value to any variable defined by
the program.

The variable is a variable name. The expression is
anv expression permitted bv the host language
whose resultant value can be converted to the data
type of the variable.

• LIST [breakpoint-identifier]

LIST displays the attributes of one breakpoint or
one tracepoint.

The breakpoint-identifier is the breakpoint or
tracepoint that you want to display. Used without
the breakpoint identifier, LIST displays the attrib­
utes for the breakpoint or tracepoint defined by the
execution environment pointer.

LIST OF DEBUGGER COMMANDS 33

LIST OF DEBUGGER COMMANDS 34

• LISTALL [program-block-name
[-DESCEND]] -BREAKPOINTS

TRACEPOINTS

LISTALL lists the attributes of all breakpoints and
tracepoints.

The program-block-name is the name of the pro­
gram block that contains the breakpoints and trace-
points you want to display.

-DESCEND
Displays all breakpoints and tracepoints for a specified
block and for all nested program blocks or "descend­
ants" contained in the specified block

-BREAKPOINTS
Displays only breakpoints

-TRACEPOINTS
Displays only tracepoints

If LISTALL is used without arguments, it displays
a list of all breakpoint and tracepoint attributes.

• LOADSTATE filename

L O A D S T A T E puts previously saved breakpoints,
tracepoints, and macros into your debugging ses­
sion. They were saved with SAVESTATE.

The filename is the pathname of the SAVE­
S T A T E file.

command-list 1
macro-name - D E L E T E

- E D I T |
- C H A N G E . N A M E

old-macro-name new-macro-name
- O N
- O F F

• MACRO

Creates new commands, called macros, that can be
used in place of one or more Debugger commands.

macro-name is the name of the macro that you
want to create, command-list is the list of one or
more Debugger commands that vou want your
macro name to stand for.

You must enclose the command list within square
brackets and separate the commands with semico­
lons.

- D E L E T E
Deletes a specified macro

- E D I T
Invokes the Debugger command line editor so that
you can modify the macro specified by macro-name

- C H A N G E _ \ A M E
Changes the name of a macro from old-macro-name
to new-macro-name

-OFF
Turns off the use ot macros without destroying your
current macros

-ON
Enables the use of macros once again

T o create a macro so that you can use one or more
parameters as desired, enclose a positive integer
within percent signs (%) in the command list for
every parameter you mav want to use.

• MACROLIST [macro-name]

Displays one or all of vour currently defined macros
and their command lists.

The macro-name is the name of a specific macro
that you want to display. Used by itself, with no
macro name, MACROLIST displays all the macros
in the macrolist and in their command lists.

LIST OF DEB i 'GGER COMMANDS 35

LIST OF DEBUGGER COMMANDS 36

• MAIN [program-block-name]

MAIN tells the Debugger what the main program
block should be. The main program is the program
block that the Debugger calls when a R E S T A R T
command is entered.

The program-block-name is the name of the pro­
gram block that you want the Debugger to call
when a R E S T A R T command is entered. Used by
itself, with no program block name, MAIN displays
the name of the main program that the Debugger
currently recognizes.

• O U T

O U T continues program execution until the cur­
rent block, defined by the execution environment
pointer, returns.

• PAUSE

PAUSE temporarily suspends your debugging ses­
sion and returns you to PRIMOS command level.
You must enter only internal PRIMOS commands
with PAUSE, not external commands.

• PMODE print-mode variable-1 [,variable-
2 . . .]

PMODE sets the print mode of a variable to a spe­
cified print mode. Whenever tht variable is dis­
played in your debugging session, it is displayed in
the specified print mode.

The print-mode is the print mode you want to
specify. It can be ASCII, BIT, D E C I M A L ,
F L O A T , HEX, OCTAL, or D E F A U L T .

variable-1 and variable-2 . . . are the variables
whose print mode you want to set.

The next list provides the results that are printed
for each print mode.

ASCII
Prints each group of 8 bits as an ASCII character

BIT
Prints each bit as a binary digit

DECIMAL
Prints each group of 16 bits as a signed single-precision
decimal number

FLOAT
Prints each group of 32 bits as a single-precision float­
ing point number

HEX
Prints each group of 4 bits as a hexadecimal digit

OCTAL
Prints each group of 16 bits as an unsigned octal num­
ber

DEFAULT
Sets the print mode to the default mode (the mode
corresponding to the declared tvpe ot the variable)

• PSYMBOL

PSYMBOL displays a list of the names and current
character values of special symbols. The Debugger
recognizes six special svmbols.

Erase
Erases the immediately preceding character

Kill
Ignores all characters typed so far on the line

LIST OF DEBUGGER COMMANDS 37

LIST OF DEBUGGER COMMANDS 38

Escape
Gives different meaning to the immediately following
character

Separator
Separates commands on command lines

Wild
SOURCE command wildcard for FIND and LO­
CATE operations

Blanks
SOURCE command match for any number of blanks

• QUIT

QUIT ends the debugging session and returns you
to P R I M O S command level.

• RESTART [step-command]

R E S T A R T starts or restarts program execution
from within the Debugger.

The step-command is an optional Debugger sin­
gle-stepping command (STEP, STEPIN, IN, or
OUT) .

• RESUBMIT

RESUBMIT invokes the Debugger's command
line editor so that you can modify the most recent
command line entered.

For a complete list of command line editor subcom­
mands, see the section on the command line editor
in "Summary of Debugger Features."

• SA VEST ATE filename [-MACROS]
[-BREAKPOINTS] [-TRACEPOINTS]

SA VEST A T E saves your breakpoints, tracepoints,
and/or macros and places them into a P R I M O S
text file for future use.

The filename is the pathname of the P R I M O S file
where you want to place your breakpoints, trace-
points, and/or macros. If you specify only the filen­
ame, the file will be placed in the directory to which
you are attached.

-MACROS
Saves only vour macros

-BREAKPOINTS
Saves only your breakpoints and their action lists

-TRACEPOINTS
Saves only your tracepoints

If you specify only a filename without an option,
then all of your breakpoints, tracepoints, and
macros are saved.

• SEGMENTS

S E G M E N T S displays a list of segments in memory
currently in use. The segments are classified by
usage as follows:

• User procedure text, linkage text, and data

• Debugger procedure text

• Debugger linkage text, data, and symbol table

• Stack areas

LIST OF DEBUGGER COMMANDS 39

LIST OF DEBUGGER COMMANDS 40

• SOURCE source-command [argument]

SOURCE allows you to examine your source file
while debugging.

The source-command is any E D I T O R command
that you can use with SOURCE. There are 14 that
you can use, all of which examine, but do not mod­
ify, a file. The argument is an EDITOR command
object such as a line number or text string. See the
source E D I T O R subcommands listed below.

Repeat command line; see also Debugger REPEAT
(*) Command.

BOTTOM
Position pointer to bottom of file.

BRIEF
Don't print target lines of FIND, LOCATE,
POINT, and NEXT operations.

FIND
Locate line with the specified text string beginning in a
given column.

LOCATE
Locate line with the specified text string.

MODE
Set edit mode; the only mode implemented is NUM-
BER/NNUMBER.

NEXT
Move line pointer forward or backward.

POINT
Position to specific line.

PRINT
Print one or more lines.

PSYMBOL
Print character symbols; see also Debugger PSYM­
BOL command.

SYMBOL
Set character symbol; see also Debugger SYMBOL
command.

T O P
Position line pointer to top of tile.

V E R I F Y
Print target lines of F IND, L O C A T E , P O I N T , and
N E X T operations.

W H E R E
Print current line number.

T h e r e are three o ther special source subcommands .

EX
The EX subcommand sets the source rile and EDI­
T O R line pointer to the source line where execution
resumes (the execution environment pointer), then
displays that line. You cannot use this command when
the execution environment pointer is at a program
block exit.

N A M E

filename
- D E F A U L T]

The N A M E subcommand lets vou look at the con­
tents of another file from within the Debugger.

The - D E F A U L T option brings you back to looking
at the file corresponding to the evaluation environ­
ment.

Used with no argument, the N A M E subcommand
gives the current source pathname.

R E N A M E
filename [-BLOCK program-block-name]

The R E N A M E subcommand resets the default source
filename for a specified program.

The filename is the name vou want for your default
source file. The program-block-name is the name of
the program block in which the default source file will
be the specified filename. If vou do not specify pro­
gram-block-name, the Debugger assumes it is the cur­
rent evaluation environment. If the indicated program
block is the same as the current block, the current
source file is changed to filename.

LIST OF DEBUGGER COMMANDS 41

LIST OF DEBUGGER COMMANDS 42

• STATUS

STATUS displays information about the state of
your debugging environment.

• STEP [value]

STEP executes one or more statements at a time
and steps across calls to program blocks.

The value is the number of statements you want to
execute before suspending execution. If no value is
specified, one statement is executed by default.

• STEPIN [value]

STEPIN executes one or more statements at a time
and steps into program blocks that are called.

The value is the number of statements you want to
execute before suspending execution. If no value is
specified, one statement is executed by default.

[FULL
• STRACE QUIET

OFF

STRACE allows you to display a trace message be­
fore execution of every program statement or every
labelled program statement. STRACE invokes the
statement tracing feature.

FULL
Displays a trace message before the execution of every
program statement in vour program

QUIET
Displays a trace message only before the execution of
each labeled statement

OFF
Turns off statement tracing

• SYMBOL symbol-name character-value

SYMBOL changes the value of a special symbol
recognized bv the Debugger.

The symbol-name is the name of the character
symbol: ERASE, KILL, ESCAPE, SEPARA­
T O R , W I L D , or BLANKS. The character-value
is the new character value of the symbol. It may not
be alphanumeric or identical to an existing character
symbol value, and it may not be a space.

• TRACEBACK [-FRAMES value [-1 EAST
- R E C E N T]] [-FROM value] [-TO value]
[-REVERSE] [-DBG] [-ONUnirs]
[-ADDRESSES]

TRACEBACK allows you to look at the contents
of the call/return stack, a list of currently active
program blocks in your program execution.

value is a positive non-zero integer. With no argu­
ments, all frames on the stack are printed from most
recent to least recent.

-FRAMES
Specifies the number ot frames displayed by value and
display frames from the most recent frame to the least
recent frame

- L E A S T . RECENT
Displays the least recent value frames

LIST OF DEBUGGER COMMANDS 43

LIST OF DEBUGGER COMMANDS 44

-FROM
Starts the traceback from the frame number value that
follows -FROM

- T O
Ends the traceback with the frame represented by
value

-REVERSE
Lists the frames in reverse order from the least recent
to the most recent

-DBG
Displays debugger-owned frames in expanded form
along with other frames

-ONUNITS
Displays for each frame the names of all on-units and
their addresses

-ADDRESSES
Displays internal address information

• T R A C E P O I N T [breakpoint-identifier]
[-AFTER value]
[-BEFORE value] [-EVERY
value] [-COUNT value]

- I G N O R E
- N I G N O R E

T R A C E P O I N T displays a trace message each time
a statement, label, or entry/exit to a program block
is encountered.

The breakpoint-identifier is the statement, label,
or entry/exit where you want to display a trace
message.

The - A F T E R , - B E F O R E , -EVERY, - C O U N T ,
- I G N O R E , and - N I G N O R E options work the
way they do for breakpoints. (For an explanation of
these options, see the discussion under the
B R E A K P O I N T command in this section.)

• T Y P E expression

T Y P E displays the data type and other attributes of
a variable or expression.

expression is any expression permitted bv the host
language.

• U N W A T C H variable-1 [,variable-2 . . .]
-ALL

U N W A T C H removes one or more variables from
the watch list (created during value tracing with the
W A T C H command).

variable-1 and variable-2 . . . are the variables you
want to remove from the watch list. The - A L L op­
tion removes all variables from the watch list.

• U N W I N D

U N W I N D unwinds call/return stack and causes
the execution environment pointer to become unde­
fined.

• VPSD

VPSD invokes the 64V-mode Prime Symbolic De­
bugger (VPSD), which is one of Prime's machine-
level debuggers.

LIST OF DEBUGGER COMMANDS 45

LIST OF DEB UGGER COMMANDS 46

• VTRACE
f FULL

ENTRY_EXIT
OFF

VTRACE can trace values at the entry or exit of a
program block and turn off value tracing.

ENTRY.EXIT
Enables value tracing on only the entries to and exits
from program blocks

OFF
Suppresses value tracing without disturbing the con­
tents of the watch list

FULL
Enables value tracing at every statement once again

• W A T C H variable-1 [,variable-2 . . .]

W A T C H displays a message whenever the value of
one or more variables changes during program exe­
cution. This feature is known as value tracing.

variable-1 and variable-2 . . . are the variables
whose values you want to trace. The variables that
you trace are placed onto an internal Debugger
table known as the watch list.

Give a program block and activation number to
watch an automatic variable at that activation only:

program-block-name \ activation-number \
variable-name

T o watch any portion of an array or structure, use
star extent or bound pair in reference. (See the :
command.)

The way variables are watched differs for each stor­
age class:

The value of a static variable is saved when the
WATCH command is given and is watched
throughout the debugging session unless it is re­
moved by UNWATCH. (All COBOL variables
are static.)

Value of an automatic variable is saved upon pro­
gram block entrv and watched until the program
block becomes inactive.

A PL / l -G based variable or Pascal dynamic vari­
able is saved and watched according to the storage
class of the locator (pointer).

PL / l -G controlled variables cannot be watched.

• WATCH LIST

W A T C H L I S T displays the names of variables cur­
rently in the watch list.

• W H E R E [segment-number/offset]

W H E R E displays the location of the execution en­
vironment pointer.

You can find the program location that corresponds
to a given memory address by specifying the seg­
ment-number (octal), and the offset (octal), which
is the address of the location in the segment.

Used by itself, with no argument, W H E R E dis­
plays the current location of the execution environ­
ment pointer.

LIST OF DEBUGGER COMMANDS 47

DEBUGGER TERMS
AND CONCEPTS

Several Debugger terms and concepts are related to
the Debugger functions. For more detailed infor­
mation, see the Source Level Debugger User's Guide.

• Action List

An action list is a list of Debugger commands en­
closed in square brackets and separated by semico­
lons. For example:

[: X; TYPE X; TYPE Y]

(See the discussion under the BREAKPOINT
command.)

• Activation
An activation refers to a particular execution of a
program block. An activation number specifies a
particular activation of a program block when
more than one activation can exist. The activation
numbers are either absolute or relative.

Absolute
The actual number of the activation.

Relative
The number of activations to count backwards
from most recent activation. Specify number
with a minus sign and integer constant.

• Active Program Blocks

An active program block is a program block that
has been called, but not yet returned.

Environments

The environment identifies a program block or
subroutine. The Debugger maintains two environ­
ment pointers:

Execution Environment Pointer
Describes the location at which the Debugger
resumes execution. (Defined only when pro­
gram is active.)

Evaluation Environment Pointer
Describes the default program block block at
which the Debugger looks for variables and
statements. The default evaluation environment
depends on how the Debugger is entered. (See
Source Level Debugger User's Guide.)

Language of Evaluation

The default language that the Debugger uses at
any given time is set to the source language of the
program block containing the evaluation environ­
ment pointer. The language of evaluation tells the
Debugger which language syntax rules to use in
evaluating expressions.

Program Blocks

The universal language-independent term pro­
gram block refers to any program unit in any of
the seven supported languages. The Debugger
uses the names of program blocks to identify vari­
ables and statements.

Table 5 shows what program blocks are in the
context of each of the languages and explains how
the Debugger identifies the program blocks.

DEBUGGER TERMS AND CONCEPTS 49

DEBUGGER TERMS AND CONCEPTS 50

TABLE 5
PROGRAM BLOCKS

Language

F O R T R A N IV

F O R T R A N 77

PL1 Subset G

PASCAL

Program Block

Main Program

Subroutine

Function

(same as
F O R T R A N
IV)
Procedure

BEGIN block

Main program

Procedure

Function

Identification

By name, if pro­
vided, in FOR­
T R A N
P R O G R A M
statement and
by SMAIN if
name not pro­
vided
By name in
S U B R O U T I N E
statement
By name in
F U N C T I O N
statement

By procedure
name
By SBEGIN fol­
lowed by source
line number of
BEGIN state­
ment
By name, if pro­
vided, in P R O ­
GRAM
statement and
by $$MAIN$$
if name not pro­
vided
Bv name in
P R O C E D U R E
statement
By name in
F U N C T I O N
statement

TABLE 5 (CONTINUED)

Language

COBOL 74

RPGII

C

Program Block

One complete
program

Main program

Subroutine

Function

Identification

Bv name speci­
fied in PRO­
GRAM-ID
statement
Bv
RPGSMAIN
Bv name in
BEGSR state­
ment
By function
name

Watch List

The watch list is an internal Debugger table hold­
ing the variables that you want to trace during
your program's execution. Use the W A T C H
command to specify the variables.

Special Characters

The Debugger uses special characters either to do
certain things or to be part of command syntax.
See the list below. You or your System Adminis­
trator can change the erase and kill characters to
other characters.

Erase character (")
Erases the previous character tvped. The dou­
ble-quote is the system default.

Kill character (?)
Causes the line tvped thus far to be ignored.

The question mark is the system default.

Backslash (\)
Qualifies a program block name in breakpoints,
variable definitions and statement definitions.

Left bracket ([)
Begins an action list.

DEBUGGER TERMS AND CONCEPTS 51

DEBUGGER TERMS AND CONCEPTS 52

Right bracket (])
Terminates an action list.

Quotation mark (' ")
Encloses a text string. (You may use the double
quote if you change the erase character or use
the escape character with it.) The Debugger in­
terprets the text string literally. It ignores the
special meanings of separators, left and right
brackets, and the type of quotation mark that
did not begin the string (double quote if the
string is enclosed by single quotes and vice
versa). To include the same type of quote in a
text string, supply two consecutive marks.

Separator character (;)
Separates multiple commands on one line. The
semicolon is the Debugger default.

Escape (")
Entered directly in front of special and regular
(nonspecial) characters, it gives them different
meanings. It negates the special meanings of
certain special characters and gives special
meanings to normal characters. The circumflex,
or up arrow, is the Debugger default.

SPECIAL
CONSIDERATIONS

FOR ALL
LANGUAGES

Close Data Files Before Using R E S T A R T : If
your program is using one or more P R I M O S data
files and you have suspended execution, you may
not be able to use R E S T A R T to rerun the program
unless vou close the input file.

Enter the ! command, the P R I M O S CLOSE com­
mand, and the name of the input file you want to
close.

Closing files with CLOSE ALL: If your program
closes file units indiscriminately (with CLOSE
ALL), specify the F U L L _ I N I T option on the
DBG command line. Do not give the CLOSE ALL
command when using quick initialization.

On-units for ILLEGAL_INST$ or ANYS: If
your program creates an on-unit for the system
condition ILLEGAL_INSTS or ANYS, the on-
unit is invoked when breakpoints are encountered.

Therefore, if your program creates on-units for
these conditions, do not use these Debugger com­
mands: BREAKPOINT, T R A C E P O I N T , STEP,
STEPIN, STRACE, and VTRACE.

SPECIAL CONSIDERATIONS 54

Using Specific Segments in the Range 4001
through 4037: If your program uses specific seg­
ments in the 4001 through 4037 range without al­
locating them in SEG, the Debugger may overwrite
them for its own storage.

Use the A /SYMBOL command for common
blocks in SEG. For example, the SEG command
A /SYMBOL T E M P I 4027 177777 tells the De­
bugger that the program is using segment 4027 for
common blocks.

FOR FORTRAN IV

Compile With the -64V or - D Y N M Option:
You must use the -64V or - D Y N M option along
with the - D E B U G option when compiling a FOR­
T R A N IV program.

Messages for Completed Execution: If your pro­
gram block calls EXIT, you receive one of the fol­
lowing messages.

• "program stop at (statement-id)"

• "program exit from (statement-id)"

Exit Breakpoints and Alternate Returns: Pro­
gram blocks that execute alternate returns execute a
G O T O statement to a label. The label value would
usually be supplied as an argument to the block. If a
program executes an alternate return, you cannot
use these Debugger features:

• Exit breakpoints

• Exit tracepoints

OUT command

CALL command

Entry/exit tracing

Statement tracing

Value tracing

FOR FORTRAN 77

Messages For Completed Execution: If a pro­
gram block calls EXIT, you receive one of these
messages:

• "program stop at (statement-id)"

• "program exit from (statement-id)"

Suspended Execution at Entry: When execution
is suspended at an entry to a program block, you
cannot evaluate:

• Adjustable character arguments

• Adjustable arrays

• Assumed-size arrays

Execute the program up to the first statement and
you can evaluate these values.

FOR PASCAL

There are no special considerations for Pascal.

SPECIAL CONSIDERATIONS 55

SPECIAL CONSIDERATIONS 56

FOR PLl
SUBSET G

There are no special considerations for P L l Subset
G.

FOR COBOL 74

Data Types in COBOL 74: Some of the names of
data types in the Debugger differ from their
COBOL equivalents as shown in Table 6.

TABLE 6
DATA TYPE EQUIVALENTS

COBOL/DEBUGGER

COBOL 74
ALPHANUMERIC DIS­
PLAY (PIC X)
NUMERIC DISPLAY

(PIC 9)
COMPUTATIONAL
COMPUTATIONAL-1

(real)
COMPUTATIONAL-2

(double precision real)
COMPUTATIONAL-3

(packed decimal)

Debugger
alphanumeric

trailing overpunch

binary-1
computational-1

computational-2

computational-3

Some Debugger data types do not exist in COBOL,
so you cannot use some of the Debugger's built-in
functions to evaluate expressions.

Breakpoints on Paragraph Headings: Breakpoints
and tracepoints may be set on paragraph headings
(the COBOL equivalent of labels). If a paragraph
heading begins with a number, put a $ before it to
distinguish it from a line number.

One Program Block: COBOL does not support
procedures as they are known to PASCAL and
PL1G. However, a called program acts like a pro­
gram block.

Reinitializing With LET: When you use RE­
S T A R T , the Debugger does not reinitialize the
variables initialized in the WORK­
I N G - S T O R A G E section of the program. T o test
if the program is changing a variable correctlv, you
can reinitialize some data variables with the L E T
command, and then use RESTART.

Record Element Names: Although the Debugger
lists record elements in the form
N A M E 1 . N A M E 2 . N A M E 3 , you still have to
enter these elements in the COBOL format when
the language is defined as COBOL. The C O B O L
format is N A M E 1 O F NAME2 O F N A M E 3 .

FOR RPG II

Setting Breakpoints: Set breakpoints onlv on cal­
culation statements, which are the only executable
statements.

Using SOURCE: If your source program or out­
put file is set up for 80 columns, some lines may
wrap around to the next line when displayed with
SOURCE.

SPECIAL CONSIDERATIONS 57

SPECIAL CONSIDERATIONS 58

Evaluating Variables in RPG II: The names of
data types in the Debugger differ from their RPG
II equivalents, as shown in Table 7.

TABLE 7
DATA TYPE EQUIVALENTS

RPG II'/DEBUGGER

RPG Variable Type

Field

Data Structure
Array

Table

Table Index
Indicator

Debugger Data Type

Alphanumeric or trailing over-
punch
Alphanumeric
Alphanumeric or trailing over-
punch
Alphanumeric or trailing over-
punch
Binary-1 (15)
Binary-1 (15) external

Arrays and tables are one-dimensional arrays in
RPG II. Each table has an internal index that refer­
ences the currently selected element of the table:

• Reference the internal index by the name IXSyyy,
where yyy are the last characters in the name of
table TAByyy (for example, IXSABC for TA-
BABC).

• Change the internal index with the LET com­
mand.

• Reference indicators by the name INDSxx, where
xx is any legal RPG indicator. For example,
INDSL3 is a reference for the L3 indicator. The
value for an indicator is always 0 or 1.

Using R E S T A R T : If you have a suspended pro­
gram execution and you are using an input file, you
must close the file before using R E S T A R T . (To
use an input file you specify DISK as the input de­
vice.)

To start execution, enter:

> i CLOSE filename
> RESTART

Input and Output: Close the input or output file
before using SOURCE N A M E if:

• You have specified DISK as the input device

• You have specified DISK or PRINTERS as the
output device

• You want to examine either the input or the output
file while program execution is suspended.

To examine an input or output tile, enter:

> ! CLOSE fi Iename
> SOURCE NAME fiIename

FORC

Assignment: To assign values, use the evaluation
(:) command with any of the special C assignment
operators (= + = * = ' / = % = > > = < < = & = - =
|= in addition to LET). The Debugger evaluates expres­
sions exactly the same way as a C program does.

Do not assign a value to an rvalue, for instance, an ex­
pression within parentheses. It is an illegal operation but
the Debugger does not report the error.

SPECIAL CONSIDERATIONS 59

SPECIAL CONSIDERATIONS 60

Prime C Operators: The Debugger supports all
Prime C operators except the CAST operator. De­
bugger operators for evaluating expressions are
functionally identical to the corresponding opera­
tors in the Prime C compiler and produce the same
expected side effects.

Special Characters: The Debugger does not sup­
port the C escape character (/). Use the Debugger
escape character (*). Generate a null character (/0) by
evaluating a null string (" ") .

Defaults for Constants: The default for a floating
point constant is DOUBLE. The default for an in­
teger constant is LONG.

The ?: Construct: The Debugger does not support
the ?: construct. Use the IF-ELSE construct in­
stead.

DEBUGGER DEFINED
BLOCKS

The Debugger defines two program blocks that
contain all program blocks. These blocks make it
possible to reference variables globally (outside the
current evaluation environment):

• SDBG

• JEXTERNAL

$DBG PROGRAM
BLOCK

The Debugger defines three special Debugger-de­
fined variables within SDBG: $MR, S C O U N T ,
and SCOUNTERS; all built-in functions are
"owned" by the SDBG block also.

• SMR

Contains the values of the machine registers, as
shown in Table 8 on the next page.

• SCOUNT

Contains the value of the breakpoint counter for the
most recent breakpoint or tracepoint. Useful in

DEBUGGER DEFINED BLOCKS 62

conditional breakpoint action lists (with the IF
command).

Register
Category

TABLE 8
MACHINE REGISTERS

SAVE-MASK

V

I

BR
KEYS

Description

Bit string indicating which regis­
ters have been saved
V-mode registers (A, B, L, X, Y,
E)
I-mode registers (general registers
0 through 7)
Base registers (PB, SB, LB, XB)
Process keys

• SCOUNTERS

Counts information related to program size and
program symbols, as shown in the table below.
Valid only if you specify the - F U L L _ I N I T option
on the DBG command line. To display the values
enter:

> : $COUNTERS

The meaning of each type of count specified by
S C O U N T E R S is listed below.

STATEMENTS
Number of statements in procedures compiled in
debug mode

OUTER_BLOCKS
Number of external program blocks compiled in debug
and production modes

TOTAL_BLOCKS
Number of external and internal program blocks com­
piled in debug and production modes

TOP_LEVEL_SYMBOLS
Number of declared symbols, not including structure
members

NON_TOP_LEVEL_SYMBOLS
Total number of structure members

PERMANENT.STORAGE
Number of halfwords allocated bv the Debugger for
the user program's symbol table

DATA_FILE_SIZE
Size in halfwords of the Debugger data tile contained
in the program's SEG file

FUNCTIONS

The Debugger defines built-in functions for the
supported languages within $DBG. You can use
these functions in expressions. They are listed in the
introduction to the section "Alphabetical List of
Debugger Commands."

SEXTERNAL PROGRAM
BLOCK

Invisible to users, the Debugger's S E X T E R N A L
program block may be used to reference external
variables that have not been declared in the current
evaluation environment.

DEBUGGER DEFINED BLOCKS 63

CONVERSION
CHARTS

Use the decimal-to-octal chart only if you know how
to add or subtract in octal. An asterisk (*) denotes
negative numbers when signed.

Octal to Decimal

1 to 7 1 to 7
10 8
11 9
12 10
13 11
14 12
15 13
16 14
17 15
20 16
30 24
40 32
50 40
60 48
70 56
100 64
200 128
300 192
400 256
500 320
600 384
700 448
1000 512

Decimal to Octal

1 to 7 1 to 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 17
16 20
17 21
18 22
19 23
20 24
30 36
40 50
50 62
60 74
70 106
80 120
90 132
100 144
200 310

3
cr

- J O O O O O O O O - J C - O i - ^ O J t o
^ l O O O O O O O O O O O O O O
^ l O O O O O O O O O O O O O O
- J O O O O O O O O O O O O O O

C ? O j | J t O N i - i - ' O O ^ w U W W i - ' M
Oi NJ oc 4»- O O t-o i— o Ui O Oi O t-'i O

<-n 0 0 t-o O O - ^ OC

b

* * * *
O ^ t n - t u i U M
' - ' i O O O O O O s O OC - J CT> <~M 4 ^ O J I O I—•
' ~ n O O O O O C ' O O O O O O O O O \ C 0 C - J O < - M - | i w
o o O C O O C O O O O O O O O O O O O O O O O O
< - n O
i—> | _ . | _ i (_ . ^ | - | i M M i - . •_- ^ >-- - - J U i o o >—> I—i >— I— t - i - . 1 C > 4 ^

^.1 M I n i - • c > 4 ; ' l ^ > ! - n 0 0 o c > i - ' 0 0 0 0 4 ^ 0 4 ; - 0
- - I - £ . N J O O O O O O O O O
-J O o o

CONVERSION CHARTS 66

ASCII CHARACTER SET {NON-PRINTING)

Octal
Value

200
201

202

203

204

205

206

207
210

211
212

213

214

215

216

217

220
221
222
223
224
225

226

ASCII
Char

N U L L
SOH

STX

ETX

E O T

E N Q

ACK

BEL
BS

H T
L F

V T

F F

CR

SO

SI

D L E
DC1
DC2
DC3
DC4
NAK

SYN

Comments/Prime Usage

Null character—filler
Start of header (commu­
nications)
Start of text (communica­
tions)
End of text (communica­
tions)
End of transmission
(communications)
End of I.D. (communica­
tions)
Acknowledge affirmative
(communications)
Audible alarm (bell)
Back space one position
(carriage control)
Physical horizontal tab
Line feed; ignored as ter­
minal input
Physical vertical tab (car­
riage control)
Form feed (carriage con­
trol)
Carriage return (carriage
control) (1)
Shift out (switch to alter­
nate character set) (2)
Shift in (return to stan­
dard character set)
Data link escape (3)
Device control 1 (4)
Device control 2 (5)
Device control 3 (6)
Device control 4 (7)
Negative acknowledge­
ment (communications)
Synchronization (commu­
nications)

Control
Char

*

- A

• B

* C

- D

* E

« p
- G

* H
- I

- J

» K

- L

- M

- N

* O
- P
* Q
» R
- S
- T

« U

- V

ASCII CHARACTER SET (SOX-PRIMISC)

Octal
Value

227

230
231
232
233
234
235
236
237

ASCII
Char

ETB

CAN
EM
SUB
ESC
FS
GS
RS
US

Comments/ Prime

COSTlSUED)

I 'sage

End of transmission block
(communications)
Cancel
End of Medium
Substitute
Escape
File separator

Group separator
Record separator
Unit separator

Control
Char

- W
- X
- Y
- Z
- [
- \

- 1
* -
» -

Notes
(1) Interpreted as .NL. (that is, line feed) at the

application program level.
(2) Examples of alternate character sets include

red ribbon characters or graphics characters.
(3) Has multiple functions, including:

• From a terminal: aborts (quits) user pro­
grams and returns to P R I M O S level.

• Within a file: specifies relative copy; next
byte gives number of bytes to copy from
corresponding position of previous line.

(4) Has multiple functions, including:
• From a terminal: X O N ; resume transmis­

sion.
• Within a file: relative horizontal tab; next

byte specifies number of spaces to insert.
(5) Can have multiple functions, including:

• Within a file: half line feed forward (car­
riage control).

(6) Has multiple functions, including:
• From a terminal: X O F F ; suspends (freezes)

transmission.
• Within a file: relative vertical tab; next byte

specifies number of lines to insert.
(7) Can have multiple functions, including:

• Within a file: half line feed reverse (carriage
control).

CONVERSION CHARTS 67

(i i h a a
(oO-

{
i
>
z
A

X

A\

A

11

1

S

J

b
d
0

u
LU

1
>l

r
i

q

s
j
.">
p
3

q
e

(6)*

usjjouvyQ

fJDSF

LLl
9LZ
SLZ
HZ
ZLZ
ZLZ
lit
OLZ
L9Z
99£
?9e

we
£9£
E9£
19£
09£
Z.CST

9F£
SSZ
W£
£££
Z££
[££
0?£
£*£
9t£
?K
ffZ

zn
ztz
IK
OH"

•'"/".I
1V1D0

(8) -
(£)v

]

\
1

Z
A
X

A\
A

n
i

s
a
D
d
O
N
W
1

a
r
I

H
0
d

a
CI
3
8
V
®

.UPVMl/J

IJ3SV

LZZ
9££
f££
K£
£££
2££
I££
0££
£2£
9Z£
SZZ
HZ
£3£
r z z
lit

oze
£I£
91 £

s\z
H£
£I£
2I£
II£
0I£
£0£
90C
JOE
H)Z

£oe
zoe
[0£

ooe
.m;n /

iy±jo

[9)1
<

=
>

6
8
£
9
S
•b
£
t

I

t
/

—

(s) '
+
*
(
)

(t).
$

(£) S

te)«
i

(l)3DVdS

.i.)l.m.wi/Q

IIDSF

LLl
9LZ
i'LZ

HZ
ZLZ
ZLZ
ILZ
OLZ
L9Z
99Z
S~9Z

•wz;
£92
Z9Z
196
096
LSZ
9SZ
SSZ
\>SZ

zsz
zsz
ISZ
OSZ
LH
9tZ

s>z
fU
in
in

m
on

3ni°. I

1V1DO

(DMIJMIXd) 13fS H31DFXFHJ IIOSV

89 SIHFHD N0ISW3AN0D

Notes

(1) Space forward one position
(2) Terminal usage: default erase character (erases

previous character)
(3) [£,) in British use
(4) Apostrophe/single quote
(5) Comma
(6) Terminal usage: default kill character (kills

line)
(7) 1963 standard (up-arrow)
(8) 1963 standard (back-arrow)
(9) Grave accent

(10) 1963 standard ESC
(11) Rubout; ignored, unless the user has assigned it
a particular action (for example, as the erase or kill
character)

CONVERSION CHARTS 69

	Front Cover
	
	Title Page
	1
	Credits
	2
	Table of Contents
	3
	Documentation Conventions
	4
	5
	Glossary of Prime Terms
	6
	7
	Summary of Debugger Features
	8
	9
	10
	11
	12
	13
	Invoking the Debugger
	14
	15
	16
	17
	Command Format Conventions
	18
	19
	20
	21
	Alphabetical List of Debugger Commands
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	Debugger Terms and Concepts
	48
	49
	50
	51
	52
	53
	54
	Special Considerations
	55
	56
	57
	58
	59
	60
	61
	62
	Debugger Defined Blocks
	63
	64
	65
	Conversion Charts
	66
	67
	68
	69
	70
	71
	72
	
	Back Cover

